首页> 外文期刊>Journal of Contaminant Hydrology >Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca Mountain, Nevada
【24h】

Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca Mountain, Nevada

机译:内华达州尤卡山的潜在核废料安置隧道周围的流体流动和反应性运输

获取原文
获取原文并翻译 | 示例
           

摘要

The evolution of fluid chemistry and mineral alteration around a potential waste emplacement tunnel (drift) is evaluated using numerical modeling. The model considers the flow of water, gas, and heat, plus reactions between minerals, CO_2 gas, and aqueous species, and porosity-permeability capillary pressure coupling for a dual permeability (fractures and matrix) medium. Two possible operating temperature modes are investigated: a "high-temperature" case with temperatures exceeding the boiling point of water for several hundred years, and a "low-temperature" case with temperatures remaining below boiling for the entire life of the repository. In both cases, possible seepage waters are characterized by dilute to moderate salinities and mildly alkaline pH values. These trends in fluid composition and mineral alteration are controlled by various coupled mechanisms. For example, upon heating and boiling, CO_2 exsolution from pore waters raises pH and causes calcite precipitation. In condensation zones, this CO_2 redissolves, resulting in a decrease in pH that causes calcite dissolution and enhances feldspar alteration to clays. Heat also enhances dissolution of wall rock minerals leading to elevated silica concentrations. Amorphous silica precipitates through evaporative concentration caused by boiling in the high-temperature case, but does not precipitate in the low-temperature case. Some alteration of feldspars to clays and zeolites is predicted in the high-temperature case. In both cases, calcite precipitates when percolating waters are heated near the drift. The predicted porosity decrease around drifts in the high-temperature case (several percent of the fracture volume) is larger by at least one order of magnitude than in the low temperature case. Although there are important differences between the two investigated temperature modes in the predicted evolution of fluid compositions and mineral alteration around drifts, these differences are largely within to the model uncertainty and the variability of water compositions at Yucca Mountain.
机译:使用数值模型评估了潜在废物掩埋通道(漂移)周围的流体化学变化和矿物变化。该模型考虑了水,气体和热量的流动,以及矿物质,CO_2气体和水性物质之间的反应,以及双重渗透性(裂缝和基质)介质的孔隙度-渗透率毛细管压力耦合。研究了两种可能的工作温度模式:温度超过水的沸点数百年的“高温”情况,以及在存储库的整个生命周期中温度保持低于沸点的“低温”情况。在这两种情况下,可能的渗漏水都以稀至中度盐度和适度碱性pH值为特征。流体成分和矿物蚀变的这些趋势受各种耦合机制控制。例如,在加热和煮沸时,从孔隙水中释放出的CO_2会提高pH值,并导致方解石沉淀。在冷凝区中,此CO_2重新溶解,导致pH值降低,导致方解石溶解并增强长石对粘土的蚀变。热量还增强了围岩矿物的溶解,导致二氧化硅浓度升高。在高温情况下,非晶态二氧化硅通过沸腾引起的蒸发浓缩而沉淀,而在低温情况下,则不会沉淀。预计在高温情况下,长石会转变为粘土和沸石。在这两种情况下,当渗流附近的渗水被加热时,方解石就会沉淀。与高温情况相比,高温情况(裂缝体积的百分之几)周围的预测孔隙率下降至少大一个数量级。尽管两种研究的温度模式在流体成分的预测演化和漂移附近的矿物变化之间存在重要差异,但这些差异很大程度上在模型不确定性和丝兰山水成分的变异性之内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号