首页> 外文期刊>Journal of Contaminant Hydrology >On the physics of unstable infiltration, seepage, and gravity drainage in partially saturated tuffs
【24h】

On the physics of unstable infiltration, seepage, and gravity drainage in partially saturated tuffs

机译:关于部分饱和凝灰岩中不稳定渗透,渗流和重力排水的物理学

获取原文
获取原文并翻译 | 示例
           

摘要

To improve understanding of the physics of dynamic instabilities in unsaturated flow processes within the Paintbrush nonwelded unit (PTn) and the middle nonlitbophysal portion of the Topopah Spring welded tuff unit (TSw) of Yucca Mountain, we analyzed data from a series of infiltration tests carried out at two sites (Alcove 4 and Alcove 6) in the Exploratory Studies Facility (ESF), using analytical and empirical functions. The analysis of infiltration rates measured at both sites showed three temporal scales of infiltration rate: (1) a macro-scale trend of overall decreasing flow, (2) a meso-scale trend of fast and slow motion exhibiting three-stage variations of the flow rate (decreasing, increasing, and [again] decreasing flow rate, as observed in soils in the presence of entrapped air), and (3) micro-scale (high frequency) fluctuations. Infiltration tests in the nonwelded unit at Alcove 4 indicate that this unit may effectively dampen episodic fast infiltration events; however, well-known Kostyakov, Morton, and Philip equations do not satisfactorily describe the observed trends of the infiltration rate. Instead, a Weibull distribution model can most accurately describe experimentally determined time trends of the infiltration rate. Infiltration tests in highly permeable, fractured, welded tuff at Alcove 6 indicate that the infiltration rate exhibits pulsation, which may have been caused by multiple threshold effects and water-air redistribution between fractures and matrix. The empirical relationships between the extrinsic seepage from fractures, matrix imbibition, and gravity drainage versus the infiltration rate, as well as scaling and self-similarity for the leading edge of the water front are the hallmark of the nonlinear dynamic processes in water flow under episodic infiltration through fractured tuff. Based on the analysis of experimental data, we propose a conceptual model of a dynamic fracture flow and fracture-matrix interaction in fractured tuff, incorporating the time-dependent processes of water redistribution in the fracture-matrix system.
机译:为了更好地理解尤卡山Topopah Spring焊接凝灰岩单元(TSw)的画笔非焊接单元(PTn)和中部非石phy部分内非饱和流动过程中动态不稳定性的物理现象,我们分析了一系列渗透试验得出的数据在探索性研究设施(ESF)的两个站点(Alcove 4和Alcove 6)中,使用分析和经验函数。对两个站点测得的渗透率的分析均显示了三个渗透率的时间尺度:(1)总体下降流量的宏观趋势,(2)快速运动和慢速运动的中尺度趋势表现出三个阶段的变化。流量(减少,增加和再次减少流量,如在存在空气夹带的土壤中观察到的),以及(3)微观尺度(高频)波动。在Alcove 4的非焊接单元中进行的渗透测试表明,该单元可以有效地抑制偶发性快速渗透事件。但是,众所周知的Kostyakov,Morton和Philip方程不能令人满意地描述观察到的渗透率趋势。相反,Weibull分布模型可以最准确地描述实验确定的渗透率的时间趋势。在Alcove 6的高渗透性,断裂,焊接凝灰岩中进行的渗透测试表明,渗透速率表现出脉动,这可能是由于多个阈值效应以及裂缝和基质之间水-空气的重新分布所引起的。裂缝下外部渗流,基质吸水和重力排水与渗透率之间的经验关系,以及水锋前沿的结垢和自相似性,是情境下水流非线性动力学过程的标志。通过破裂的凝灰岩渗透。在对实验数据进行分析的基础上,我们提出了裂缝凝灰岩中动态裂缝流动和裂缝-基质相互作用的概念模型,并结合了裂缝-基质系统中水随时间重新分配的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号