首页> 外文期刊>Journal of Contaminant Hydrology >A long-term bench-scale investigation of permanganate consumption by aquifer materials
【24h】

A long-term bench-scale investigation of permanganate consumption by aquifer materials

机译:含水层材料对高锰酸盐消耗量的长期台式研究

获取原文
获取原文并翻译 | 示例
           

摘要

In situ chemical oxidation (ISCO) applications using permanganate involve the injection or release of permanganate into the subsurface to destroy various target contaminants. Naturally occurring reduced components associated with aquifer materials can exert a significant oxidant demand thereby reducing the amount of permanganate available for the destruction of contaminants as well as reducing the overall rate of oxidation. Quantification of this natural oxidant demand (NOD) is a requirement for site-specific assessment and the design of cost-effective oxidant delivery systems. To further our understanding of the interaction between permanganate and aquifer materials, aerobic and anaerobic aquifer materials from eight representative sites throughout North America were tested in a series of systematic bench-scale experiments. Various permanganate to aquifer solids mass loading ratios at different initial permanganate concentrations in well-mixed batch reactors were monitored for >300 days. All NOD temporal profiles demonstrated an initial fast consumption rate followed by a persistent slower consumption rate. The data generated show that the mass loading ratio, the initial permanganate concentration, and the nature and quantity of reduced aquifer material species are the main factors controlling permanganate consumption rates. A higher initial permanganate concentration or a larger mass loading ratio produced a larger fast NOD consumption rate and generated a corresponding higher maximum NOD value. Hence, both the NOD temporal profile and the maximum NOD are not single-valued but are heavily dependent on the experimental conditions. Predictive relationships were developed to estimate the maximum NOD and the NOD at 7 days based on aquifer material properties. The concentration of manganese oxides deposited on the aquifer solids was highly correlated with the mass of permanganate consumed suggesting that passivation of NOD reaction sites occurred due to the formation of manganese oxide coating on the grains. A long-term NOD kinetic model was developed assuming a single fast and slow reacting oxidizable aquifer material species, passivation of NOD reaction sites, and the presence of an autocatalytic reaction. The developed model was able to successfully capture the observed NOD temporal profiles, and can be used to estimate in situ NOD behavior using batch reactor experimental data. The use of batch tests to provide data representative of in situ conditions should be used with caution.
机译:使用高锰酸盐的原位化学氧化(ISCO)应用涉及将高锰酸盐注入或释放到地下,以破坏各种目标污染物。与含水层材料相关的天然还原组分可以产生大量的氧化剂需求,从而减少可用于破坏污染物的高锰酸盐的量,并降低总的氧化速率。量化这种天然氧化剂需求(NOD)是针对特定地点进行评估和设计具有成本效益的氧化剂输送系统的要求。为了进一步了解高锰酸盐和含水层材料之间的相互作用,我们通过一系列系统的台式实验对来自北美八个代表点的好氧和厌氧含水层材料进行了测试。在充分混合的间歇式反应器中,在不同的初始高锰酸盐浓度下,对各种高锰酸盐与含水层固体的质量负载比进行了监测> 300天。所有NOD时间曲线均显示出初始的快速消耗速率,然后是持续的缓慢消耗速率。产生的数据表明,质量负载比,初始高锰酸盐浓度以及减少的含水层物质种类的性质和数量是控制高锰酸盐消耗速率的主要因素。较高的高锰酸盐初始浓度或较大的质量负载比会产生较大的快速NOD消耗率,并产生相应的较高的最大NOD值。因此,NOD时间曲线和最大NOD都不是单一值,而是在很大程度上取决于实验条件。建立了预测关系,以根据含水层材料特性估算最大NOD和7天时的NOD。沉积在含水层固体上的氧化锰浓度与消耗的高锰酸盐质量高度相关,这表明NOD反应位点发生钝化是由于晶粒上形成了氧化锰涂层。建立了一个长期NOD动力学模型,该模型假设存在一个快速和缓慢反应的可氧化含水层物质,一个NOD反应位点被钝化,并且存在自催化反应。开发的模型能够成功捕获观察到的NOD时域分布,并可以使用批处理反应器实验数据来估计原位NOD行为。应谨慎使用批处理测试来提供代表现场状况的数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号