首页> 外文期刊>Journal of Contaminant Hydrology >Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies
【24h】

Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies

机译:零价铁反应性阻挡层处理地下水中砷的性能:第2部分。地球化学模型和固相研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Arsenic uptake processes were evaluated in a zerovalent iron reactive barrier installed at a lead smelting facility using geochemical modeling, solid-phase analysis, and X-ray absorption spectroscopy techniques. Aqueous speciation of arsenic is expected to play a key role in directing arsenic uptake processes. Geochemical modeling reveals contrasting pH-dependencies for As(Ⅲ) and As(Ⅴ) precipitation. At the moderately alkaline pH conditions typically encountered in zerovalent iron reactive barriers, As(Ⅲ) is unlikely to precipitate as an oxide or a sulfide phase. Conversely, increasing pH is expected to drive precipitation of metal arsenates including ferrous arsenate. Bacterially mediated sulfate reduction plays an important role in field installations of granular iron. Neoformed iron sulfides provide surfaces for adsorption of oxyanion and thioarsenic species of As(Ⅲ) and As(Ⅴ) and are expected to provide enhanced arsenic removal capacity. X-ray absorption near edge structure (XANES) spectra indicate that arsenic is sequestered in the solid phase as both As(Ⅲ) and As(Ⅴ) in coordination environments with 0 and S. Arsenic removal in the PRB probably results from several pathways, including adsorption to iron oxide and iron sulfide surfaces, and possible precipitation of ferrous arsenate. Corrosion of granular iron appears to result in some As(Ⅲ) oxidation to As(ⅴ) as the proportion of As(ⅴ) to As(Ⅲ) in the solid phase is greater compared to influent groundwater. As(0) was not detected in the PRB materials. These results are broadly comparable to laboratory based studies of arsenic removal by zerovalent iron, but additional complexity is revealed in the field environment, which is largely due to the influence of subsurface microbiota.
机译:使用地球化学模型,固相分析和X射线吸收光谱技术,在铅冶炼厂安装的零价铁反应堆中评估了砷的吸收过程。砷的水形态学有望在指导砷吸收过程中发挥关键作用。地球化学模型揭示了As(Ⅲ)和As(Ⅴ)沉淀的不同pH依赖性。在零价铁反应性阻挡层中通常遇到的中等碱性pH条件下,As(Ⅲ)不可能以氧化物或硫化物相沉淀。相反,提高pH值预计会促使金属砷酸盐(包括砷酸亚铁)沉淀。细菌介导的硫酸盐还原在粒状铁的现场安装中起着重要作用。新形成的硫化铁为As(Ⅲ)和As(Ⅴ)的氧阴离子和硫砷离子的吸附提供了表面,并有望提高除砷能力。 X射线吸收的近边缘结构(XANES)光谱表明,在0和S配位的环境中,砷以As(Ⅲ)和As(Ⅴ)的形式被固存在固相中。PRB中的砷去除可能是由多种途径引起的,包括吸附到氧化铁和硫化铁表面,以及可能沉淀出砷酸亚铁。粒状铁的腐蚀似乎会导致一些As(Ⅲ)氧化成As(ⅴ),因为固相中As(ⅴ)与As(Ⅲ)的比例比流入的地下水要大。在PRB材料中未检测到As(0)。这些结果在很大程度上与基于实验室的零价铁去除砷的研究具有可比性,但是在野外环境中发现了额外的复杂性,这在很大程度上是由于地下微生物的影响。

著录项

  • 来源
    《Journal of Contaminant Hydrology》 |2009年第2期|15-28|共14页
  • 作者单位

    US. Environmental Protection Agency, National Risk Management Research Laboratory, Ground Water and Ecosystems Restoration Division, 919 Kerr Research Drive, Ada, Oklahoma 74820, United States;

    US. Environmental Protection Agency, National Risk Management Research Laboratory, Ground Water and Ecosystems Restoration Division, 919 Kerr Research Drive, Ada, Oklahoma 74820, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    permeable reactive barrier; zerovalent iron; arsenic; thioarsenic; XANES;

    机译:渗透反应性屏障零价铁砷;硫代砷XANES;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号