首页> 外文期刊>Journal of Contaminant Hydrology >Combined effect of capillary barrier and layered slope on water, solute and nanoparticle transfer in an unsaturated soil at lysimeter scale
【24h】

Combined effect of capillary barrier and layered slope on water, solute and nanoparticle transfer in an unsaturated soil at lysimeter scale

机译:毛细屏障和层状坡度对溶渗尺度下非饱和土壤中水,溶质和纳米颗粒迁移的综合影响

获取原文
获取原文并翻译 | 示例
       

摘要

It is well recognized that colloidal nanoparticles are highly mobile in soils and can facilitate the transport of contaminants through the vadose zone. This work presents the combined effect of the capillary barrier and soil layer slope on the transport of water, bromide and nanoparticles through an unsaturated soil. Experiments were performed in a lysimeter (1 x 1 x 1.6 m(3)) called LUGH (Lysimeter for Urban Groundwater Hydrology). The LUGH has 15 outputs that identify the temporal and spatial evolution of water flow, solute flux and nanoparticles in relation to the soil surface conditions and the 3D system configuration. Two different soil structures were set up in the lysimeter. The first structure comprises a layer of sand (0-0.2 cm, in diameter) 35 cm thick placed horizontally above a layer of bimodal mixture also 35 cm thick to create a capillary barrier at the interface between the sand and bimodal material. The bimodal material is composed of a mixture 50% by weight of sand and gravel (0.4-1.1 cm, in diameter). The second structure, using the same amount of sand and bimodal mixture as the first structure represents an interface with a 25% slope. A 3D numerical model based on Richards equation for flow and the convection dispersion equations coupled with a mechanical module for nanoparticle trapping was developed. The results showed that under the effect of the capillary barrier, water accumulated at the interface of the two materials. The sloped structure deflects flow in contrast to the structure with zero slope. Approximately 80% of nanoparticles are retained in the lysimeter, with a greater retention at the interface of two materials. Finally, the model makes a good reproduction of physical mechanisms observed and appears to be a useful tool for identifying key processes leading to a better understanding of the effect of capillary barrier on nanoparticle transfer in an unsaturated heterogeneous soil. (C) 2015 Elsevier B.V. All rights reserved.
机译:众所周知,胶体纳米颗粒在土壤中具有很高的流动性,可以促进污染物通过渗流带的运输。这项工作提出了毛细管屏障和土壤层坡度对水,溴化物和纳米颗粒通过不饱和土壤的运输的综合作用。实验是在称为LUGH(城市地下水水文学的测力计)的测力计(1 x 1 x 1.6 m(3))中进行的。 LUGH具有15个输出,可识别水流,溶质通量和纳米颗粒相对于土壤表面状况和3D系统配置的时间和空间演变。测渗仪中建立了两种不同的土壤结构。第一结构包括35cm厚的砂层(直径0-0.2cm),水平放置在也为35cm厚的双峰混合物层上方,以在砂和双峰材料之间的界面处产生毛细屏障。双峰材料由50%(重量)的沙子和砾石(直径0.4-1.1厘米)的混合物组成。使用与第一结构相同数量的沙子和双峰混合物的第二结构表示具有25%坡度的界面。基于Richards方程的对流和对流扩散方程,并结合用于纳米粒子捕获的机械模块,建立了一个3D数值模型。结果表明,在毛细屏障的作用下,水在两种材料的界面处聚集。与具有零斜率的结构相比,倾斜的结构使流体偏转。大约80%的纳米颗粒保留在溶血仪中,在两种材料的界面处保留更大。最后,该模型可以很好地再现观察到的物理机制,并且似乎是用于识别关键过程的有用工具,从而可以更好地理解毛细管屏障对不饱和非均质土壤中纳米颗粒转移的影响。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号