...
首页> 外文期刊>Journal of computer and system sciences >Affine projections of symmetric polynomials
【24h】

Affine projections of symmetric polynomials

机译:对称多项式的仿射投影

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this paper, we introduce a new model for computing polynomials―a depth-2 circuit with a symmetric gate at the top and plus gates at the bottom, i.e. the circuit computes a symmetric function in linear functions―S_m~d(l_1, l_2,..., l_m) (S_m~d is the dth elementary symmetric polynomial in m variables, and the l_1's are linear functions). We refer to this model as the symmetric model. This new model is related to standard models of arithmetic circuits, especially to depth-3 circuits. In particular, we show that in order to improve the results of Shpilka and Wigderson (in: CCC, Vol. 14, 1999, pp. 87-96), i.e. to prove super-quadratic lower bounds for depth-3 circuits, one must first prove a super-linear lower bound for the symmetric model. We prove two non-trivial linear lower bounds for our model. The first lower bound is for computing the determinant, and the second is for computing the sum of two monomials. The main technical contribution relates the maximal dimension of linear subspaces on which S_m~d vanishes to lower bounds in the symmetric model. In particular, we show that an answer of the following problem (which is very natural, and of independent interest) will imply lower bounds on symmetric circuits for many polynomials: What is the maximal dimension of a linear subspace of l~m, on which S_m~d vanishes? We give two partial solutions to the problem above, each enables us to prove a different lower bound. Using our techniques we also prove quadratic lower bounds for depth-3 circuits computing the elementary symmetric polynomials of degree an (where 0<α<1 is a constant), thus extending the result of Shpilka and Wigderson (in: CCC, Vol. 14, 1999, pp. 87-96). These are the best lower bounds known for depth-3 circuits over fields of characteristic zero.
机译:在本文中,我们介绍了一种用于计算多项式的新模型-深度为2的电路,其顶部为对称门,底部为正门,即该电路计算线性函数中的对称函数S_m〜d(l_1,l_2 ,...,l_m)(S_m〜d是m个变量中的第d个基本对称多项式,l_1是线性函数)。我们将此模型称为对称模型。这个新模型与算术电路的标准模型有关,特别是与深度3电路有关。特别是,我们表明,为了改善Shpilka和Wigderson的结果(见:CCC,第14卷,1999年,第87-96页),即证明深度3电路的超二次下界,必须首先证明对称模型的超线性下界。我们为模型证明了两个非平凡的线性下界。第一个下界用于计算行列式,第二个下界用于计算两个单项式的和。主要的技术贡献是将对称模型中S_m〜d消失的线性子空间的最大尺寸与下界联系起来。特别地,我们表明,以下问题的答案(非常自然且具有独立意义)将暗示许多多项式在对称电路上的下界:l〜m的线性子空间的最大维是多少? S_m〜d消失了吗?对于上述问题,我们给出了两个部分解决方案,每个解决方案都使我们能够证明一个不同的下界。使用我们的技术,我们还证明了深度3电路计算二次对称多项式an的二次下界(其中0 <α<1为常数),从而扩展了Shpilka和Wigderson的结果(见:CCC,第14卷) ,1999,第87-96页)。这是深度3电路在特征零场上已知的最佳下限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号