首页> 外文期刊>Journal of Computational Electronics >Modeling heating effects in nanoscale devices: the present and the future
【24h】

Modeling heating effects in nanoscale devices: the present and the future

机译:建模纳米器件中的热效应:现在和将来

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this review paper we give an overview on the present state of the art in modeling heat transport in nanoscale devices and what issues we need to address for better and more successful modeling of future devices. We begin with a brief overview of the heat transport in materials and explain why the simple Fourier law fails in nanoscale devices. Then we elaborate on attempts to model heat transport in nanostructures from both perspectives: nanomateri-als (the work of Narumanchi and co-workers) and nanode-vices (the work of Majumdar, Pop, Goodson and recently Vasileska, Raleva and Goodnick). We use our own simulation results which we have used to examine heat transport in nanoscaling devices to point out some important issues such as the fact that thermal degradation does not increase as we decrease feature size due to the more pronounced non-stationary transport and ballistic transport effects in nanoscale devices. We also point out that instead of using SOI, if one uses Silicon on Diamond technology there is much less heat degradation and better spread of the heat in the Diamond material. We also point out that tools for thermal modeling of nanoscale devices need to be improved from the present state of the art as 3D tools are needed, for example, to simulate heat transport and electrical transport in a FinFET device. Better models than the energy balance equations for the acoustic and optical phonons what we presently use in our simulators are also welcomed. The ultimate goal is to design the tool that can be efficient enough but at the same time can simulate most accu- rately both electrons and phonons within the particle pictures by solving their corresponding Boltzmann transport equations self-consistently. Investigations in integration of Peltier coolers with CMOS technology are also welcomed and much needed to reduce the problem of heat dissipation in nanoscale devices and interconnects.
机译:在这篇综述文件中,我们概述了纳米器件中传热建模的最新技术,以及为更好,更成功地对未来器件进行建模需要解决的问题。我们首先简要介绍材料中的热传递,并解释为什么简单的傅立叶定律在纳米器件中失败。然后,我们从两个角度阐述了在纳米结构中模拟传热的尝试:纳米材料(Narumanchi及其同事的工作)和纳米装置(Majumdar,Pop,Goodson以及最近的Vasileska,Raleva和Goodnick的工作)。我们使用我们自己的模拟结果(已用于检查纳米尺度设备中的热传递)来指出一些重要问题,例如由于更明显的非平稳传递和弹道传递,随着我们减小特征尺寸,热降解不会增加纳米器件中的效应。我们还指出,如果不使用SOI,则如果使用基于金刚石的硅技术,则热降解会少得多,并且热量在Diamond材料中的散布会更好。我们还指出,由于需要3D工具(例如,模拟FinFET器件中的热传输和电传输),需要对纳米级设备进行热建模的工具需要从当前的现有技术中进行改进。与目前在模拟器中使用的声子和光子的能量平衡方程相比,也欢迎使用比能量平衡方程更好的模型。最终目标是设计一种工具,该工具应足够有效,但同时可以通过自洽地求解相应的玻尔兹曼输运方程来最精确地模拟粒子图中的电子和声子。也欢迎进行珀耳帖冷却器与CMOS技术集成的研究,这对于减少纳米级设备和互连中的散热问题非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号