首页> 外文期刊>Journal of Cleaner Production >Impacts of pre-treatment technologies and co-products on greenhouse gas emissions and energy use of lignocellulosic ethanol production
【24h】

Impacts of pre-treatment technologies and co-products on greenhouse gas emissions and energy use of lignocellulosic ethanol production

机译:预处理技术和副产品对木质纤维素乙醇生产的温室气体排放和能源利用的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Life cycle environmental performance of lignocellulosic ethanol produced through different production pathways and having different co-products has rarely been reported in the literature, with most studies focusing on a single pre-treatment and single co-product (electricity). The aim of this paper is to understand the life cycle energy use and greenhouse gas (GHG) emissions implications of alternative pre-treatment technologies (dilute acid hydrolysis, ammonia fiber expansion and autohydrolysis) and co-products (electricity, pellet, protein and xylitol) through developing a consistent life cycle framework for ethanol production from corn stover. Results show that the choices of pre-treatment technology and co-product(s) can impact ethanol yield, life cycle energy use and GHG emissions. Dilute acid pathways generally exhibit higher ethanol yields (20-25%) and lower net total energy use (15-25%) than the autohydrolysis and ammonia fiber expansion pathways. Similar GHG emissions are found for the pre-treatment technologies when producing the same co-product. Xylitol co-production diverts xylose from ethanol production and results in the lowest ethanol yield (200 L per dry t of stover). Compared to producing only electricity as a co-product, the co-production of pellets and xylitol decreases life cycle GHG emissions associated with the ethanol, while protein production increases emissions. The life cycle GHG emissions of blended ethanol fuel (85% denatured ethanol by volume) range from -38.5-37.2 g CO_2eq/MJ of fuel produced, reducing emissions by 61-141% relative to gasoline. All ethanol pathways result in major reductions of fossil energy use relative to gasoline, at least by 47%.
机译:通过不同的生产途径生产并具有不同的副产物的木质纤维素乙醇的生命周期环境性能在文献中鲜有报道,大多数研究集中在单一的预处理和单一的副产物(电)上。本文的目的是了解替代预处理技术(稀酸水解,氨纤维膨胀和自水解)和副产品(电,颗粒,蛋白质和木糖醇)的生命周期能耗和温室气体(GHG)排放的影响),为玉米秸秆生产乙醇开发一致的生命周期框架。结果表明,预处理技术和副产物的选择会影响乙醇产量,生命周期能源消耗和温室气体排放。与自动水解和氨纤维膨胀途径相比,稀酸途径通常表现出更高的乙醇收率(20-25%)和更低的净总能源消耗(15-25%)。当生产相同的副产品时,预处理技术的温室气体排放量相似。木糖醇联产可将乙醇生产中的木糖转移出去,并导致最低的乙醇产量(每干吨秸秆200升)。与仅作为副产品生产电力相比,颗粒和木糖醇的共同生产减少了与乙醇相关的生命周期温室气体排放,而蛋白质生产则增加了排放。混合乙醇燃料(体积百分比为85%的变性乙醇)的生命周期温室气体排放为-38.5-37.2 g CO_2eq / MJ燃料,相对于汽油减少了61-141%。所有乙醇途径都导致与汽油相比,化石能源的使用量大大减少,至少减少了47%。

著录项

  • 来源
    《Journal of Cleaner Production》 |2014年第1期|104-111|共8页
  • 作者单位

    Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200, College Street, Toronto, ON M5S 3E5, Canada;

    Division of Energy and Sustainability, University of Nottingham, University Park, Nottingham NG7 2RD, UK;

    Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200, College Street, Toronto, ON M5S 3E5, Canada;

    Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200, College Street, Toronto, ON M5S 3E5, Canada;

    Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200, College Street, Toronto, ON M5S 3E5, Canada,Department of Civil Engineering, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4, Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bioethanol; Corn stover; Life cycle assessment; Biorefinery; Co-products; Pre-treatment;

    机译:生物乙醇玉米秸秆;生命周期评估;生物炼制;副产品;预处理;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号