...
首页> 外文期刊>Journal of atmospheric and oceanic technology >Rainfall Doppler Velocity Measurements from Spaceborne Radar: Overcoming Nonuniform Beam-Filling Effects
【24h】

Rainfall Doppler Velocity Measurements from Spaceborne Radar: Overcoming Nonuniform Beam-Filling Effects

机译:星载雷达的降雨多普勒速度测量:克服非均匀波束填充效应

获取原文
获取原文并翻译 | 示例

摘要

For vertical Doppler velocity measurements of a homogeneous rain field, the standard spectral moment estimation techniques commonly used by ground-based and airborne Doppler rain radars can be readily extended for spaceborne application, provided that the radar antenna size is chosen to adequately reduce the satellite motion-induced Doppler spectral broadening. When encountering an inhomogeneous rain field, on the other hand, the nonuniform beam filling (NUBF) causes additional biases on Doppler velocity estimates, which (ⅰ) often reach several meters per second, (ⅱ) cannot be corrected with standard spectral moment techniques, and (ⅲ) are strongly dependent on the along-track reflectivity profile within the radar footprint. One approach to overcome this difficulty is to further increase the antenna size such that the radar's horizontal resolution would be sufficiently small to resolve the inhomogeneity in rain cells. Unfortunately, this approach is very challenging in terms of antenna technology and spacecraft resources and accommodation. In this paper, an alternate data processing approach is presented to overcome the NUBF difficulty. This combined frequency-time (CFT) processing technique is used to process a series of Doppler spectra collected over measurement volumes that are partially overlapping in the along-track direction. Its expected performance is evaluated through a spaceborne simulation study using three case studies from high-resolution 3D rainfall datasets acquired by the NASA JPL airborne rain mapping radar. In each of these cases, each representing a different rain regime with a different degree of spatial variability, the CFT technique can effectively remove the NUBF-induced bias such that the mean Doppler velocity estimates achieve the desired accuracy of 1 m s~(-1) for a signal-to-noise ratio greater than 10 dB.
机译:对于均匀雨场的垂直多普勒速度测量,只要选择雷达天线尺寸以充分减少卫星运动,地面和机载多普勒雨雷达通常使用的标准频谱矩估计技术可以很容易地扩展到太空应用。引起的多普勒频谱展宽。另一方面,当遇到不均匀的雨场时,不均匀的波束填充(NUBF)会给多普勒速度估计值带来额外的偏差,(ⅰ)通常达到每秒几米,(ⅱ)无法使用标准的频谱矩技术进行校正,和(ⅲ)在很大程度上取决于雷达覆盖区内的沿轨道反射率曲线。解决这一难题的一种方法是进一步增加天线尺寸,以使雷达的水平分辨率足够小,以解决雨单元中的不均匀性。不幸的是,这种方法在天线技术,航天器资源和容纳方面都非常具有挑战性。本文提出了另一种数据处理方法来克服NUBF的困难。这种组合的频率时间(CFT)处理技术用于处理在沿轨迹方向部分重叠的测量体积上收集的一系列多普勒光谱。通过一项太空仿真研究,使用来自NASA JPL机载雨图雷达获得的高分辨率3D降雨数据集的三个案例研究,评估了其预期性能。在每种情况下,每种情况代表不同的降雨状况,且空间变异程度不同,CFT技术可以有效消除NUBF引起的偏差,从而使平均多普勒速度估计达到所需的1 ms〜(-1)精度。对于大于10 dB的信噪比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号