首页> 外文期刊>Journal of Asian earth sciences >Postseismic deformation associated with the 2015 Mw 7.8 Gorkha earthquake, Nepal: Investigating ongoing afterslip and constraining crustal rheology
【24h】

Postseismic deformation associated with the 2015 Mw 7.8 Gorkha earthquake, Nepal: Investigating ongoing afterslip and constraining crustal rheology

机译:尼泊尔2015年Mw 7.8地震相关的地震后形变:调查持续的滑坡和约束地壳流变学

获取原文
获取原文并翻译 | 示例
       

摘要

The 2015 Mw 7.8 Gorkha earthquake has not only imposed effective constraints on the geometrical structures, friction behaviours and seismogenic patterns of the Nepal Himalaya thrust systems but has also provided valuable insights into the uplift mechanism and lithosphere rheology of the Tibetan Plateau. Here, similar to 1.6-year GPS observations are used to reveal the postseismic deformation characteristics following the Gorkha earthquake, investigate the ongoing aseismic afterslip on the Main Himalayan Thrust (MHT) fault and constrain the crustal rheology of the Southern Tibetan Plateau. First, afterslip is considered to be solely responsible for the postseismic deformation (afterslip-only model). The results show that afterslip is anticorrelated with peak coseismic slip areas. One high-afterslip-concentration area, with a peak of similar to 24 cm, is distributed downdip of the coseismic rupture, as well as in two other regions: one partially overlapping the mainshock rupture, and the other next to the Mw 7.3 aftershock area. Second, the GPS postseismic observations are inverted to jointly investigate afterslip and viscoelastic deformation (multiple-mechanism model). The afterslip inversion results of the above two models are highly consistent, indicating the dominant contribution of afterslip to surface deformation during the similar to 1.6-year postseismic period. Considering the interseismic fault coupling and historical seismicity, no appreciable fault slip associated with the Gorkha earthquake is found to occur both updip and west of the mainshock rupture areas. This reveals that the Gorkha earthquake only unzipped the lower edge of the locked portion of the MHT, leaving the shallow portion and western segment of the seismogenic zone still locked and the Nepal region under high seismic risk. The viscoelastic mechanism contributes minorly to surface deformation during the similar to 1.6-year postseismic period. The middle-lower crust is assumed to comprise Maxwell material beneath an elastic similar to 25-km-thick upper crust and the optimal viscosity is conservatively estimated to be 1.6 x 10(19) Pa s beneath the Southern Tibetan Plateau, which should be robustly constrained with more long-term observations, more effective spatial constraints, and more detailed crustal models.
机译:2015年Gwkha 7.8级地震不仅对尼泊尔喜马拉雅逆冲系统的几何结构,摩擦行为和地震成因模式施加了有效约束,而且对青藏高原的隆升机制和岩石圈流变学也提供了宝贵的见解。在这里,类似于1.6年的GPS观测数据被用来揭示戈尔卡地震后的地震后变形特征,调查喜马拉雅主冲断层(MHT)上正在进行的地震后滑,并限制了青藏高原南部的地壳流变学。首先,滑移被认为是造成地震后变形的唯一原因(仅滑移模型)。结果表明,后滑动与同震滑动峰面积成反相关。一个高后滑浓度区,其峰值近似于24 cm,分布在同震破裂的下倾方向,以及其他两个区域:一个与主震破裂部分重叠,另一个与Mw 7.3余震区域相邻。其次,将GPS后震观测值倒置,以共同研究后滑和粘弹性变形(多机理模型)。上述两个模型的滑移反演结果高度一致,表明在类似于1.6年的地震后,滑移对地表变形的主要贡献。考虑到地震间断层耦合和历史地震活动性,未发现与Gorkha地震有关的明显断层滑动发生在主震破裂区的上倾和以西。这表明,戈尔卡地震仅解开了MHT锁定部分的下边缘,而致震带的浅部和西段仍被锁定,尼泊尔地区处于高地震危险之下。在类似于地震后1.6年的时期内,粘弹性机制对表面变形的贡献很小。假设中下地壳在类似于25 km厚的上地壳的弹性体下面包含麦克斯韦物质,并且保守地估计最佳粘度为青藏高原南部以下的1.6 x 10(19)Pa s,这应该是有力的受到更多长期观测,更有效的空间约束和更详细的地壳模型的约束。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号