...
首页> 外文期刊>Journal of Applied Physics >Pyrolytic Graphites: Their Description as Semimetallic Molecular Solids
【24h】

Pyrolytic Graphites: Their Description as Semimetallic Molecular Solids

机译:热解石墨:半金属分子固体的描述

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with an investigation of the electrical, the galvanomagnetic, and the thermoelectric properties of pyrolytic graphites whose morphological features are conditioned by the deposition temperature, the heat treatment, and the doping level. (1) Basal-plane magnetoresistance and c-direction specific resistance of deposits prepared at temperatures ranging from 1900° to 2500°C point to a remarkable improvement of the crystallites'' alignment with rising deposition temperature. In both crystallographic directions the Seebeck coefficient closely follows semi-empirical predictions based on the two-dimensional model of the π-electron bands. The Fermi level of a standard deposit (2100°C) is at 0.025 eV below the valence-band edge and thus indicates that crystal defects trap about 7.5×1018 electrons/cm3 at room temperature; this figure is in accord with a Hall coefficient of 0.33 cm3/C. The average in-plane mobility (930 cm2/V-sec) corresponds to a mean free path of the order of the crystallite diameter (250 Å). (2) Post-deposition treatment at temperatures above 2500°C results in (a) a rapid drop of the room-temperature basal-plane resistivity down to 50 μΩ-cm or less, (b) a Hall effect conversion from p to n type in the early stages of graphitization, and (c) a trend toward negative Seebeck coefficients in the layer planes. In conjunction with low-field magnetoresistance measurements these results can be described in terms of semimetallic concepts, the simultaneous presence of holes and electrons with equal concentrations (6×1018 cm-3 at room temperature) stemming from a slight band overlap. Average mobilities imply t-nhat the carrier behavior approaches single-crystal characteristics ( ≈ 104 cm2/V-sec at room temperature) after heat treatment above 3000°C. Normal to the layers, the specific resistance always exceeds 0.1 Ω-cm, which points to a molecular conduction process in this direction. (3) An incorporation of boron into the carbon-hexagon networks lowers the electrical resistance of graphite particularly in the c direction (twenty-fold decrease at a composition of 0.6 at.%B); concurrently the two temperature coefficients become approximately equal to zero. In the rigid-lattice approximation band-population figures derived from the resistivity temperature dependence reflect the Hall coefficient behavior, the peak occurring at an equivalent boron content of 0.04%. The ionization efficiency is of the order of 50% with a Fermi level depressed by more than 0.1 eV. Thermoelectric power measurements in the c direction accord with the view that charge transport across the layer planes involves most of the excess holes, and reveal that boron enhances the Seebeck anisotropy of graphite.
机译:本文涉及对热解石墨的电学,电磁学和热电学性质的研究,其形态特征受沉积温度,热处理和掺杂水平的影响。 (1)在1900°C至2500°C的温度范围内制备的沉积物的基面磁电阻和c方向电阻率表明,随着沉积温度的升高,晶粒的取向显着改善。在两个晶体学方向上,塞贝克系数都紧密遵循基于π电子能带的二维模型的半经验预测。标准沉积物(2100°C)的费米能级在价带边缘以下0.025 eV处,因此表明晶体缺陷在室温下俘获约7.5×1018电子/ cm3;该数字与0.33 cm3 / C的霍尔系数一致。平均面内迁移率(930 cm2 / V-sec)相当于微晶直径(250Å)数量级的平均自由程。 (2)在2500°C以上的温度下进行沉积后处理,导致(a)室温基础平面电阻率迅速下降至50μΩ-cm或更小,(b)从p到n的霍尔效应转换在石墨化的早期阶段,其类型为(c)层平面中的塞贝克系数为负的趋势。结合低场磁阻测量,这些结果可以用半金属概念来描述,空穴和电子同时存在,其浓度相同(在室温下为6×1018 cm-3),这是由于微小的带重叠造成的。平均迁移率意味着在3000°C以上的热处理后,载流子行为接近于单晶特性(室温下约为≈≈104cm2 / V-sec)。垂直于各层,电阻率始终超过0.1Ω-cm,这表明该方向上的分子传导过程。 (3)硼混入碳六方网络降低了石墨的电阻,特别是在c方向(在0.6 at。%B的情况下降低了20倍);同时,两个温度系数近似等于零。在由电阻率温度依赖性得出的刚性晶格近似能带密度图中,反映了霍尔系数特性,该峰出现在等效硼含量为0.04%时。电离效率约为50%,费米能级降低超过0.1 eV。在c方向上的热电功率测量结果符合这样的观点,即跨层平面的电荷传输涉及大多数多余的空穴,并揭示出硼增强了石墨的塞贝克各向异性。

著录项

  • 来源
    《Journal of Applied Physics 》 |1962年第11期| 共20页
  • 作者

    Klein Claude A.;

  • 作者单位

    Raytheon Research Division, Waltham, Massachusetts;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号