...
首页> 外文期刊>Journal of Applied Physics >Magnetic Field Reversal by Relativistic Electrons Which Slow Down While Circulating in a Uniform Impressed Magnetic Field
【24h】

Magnetic Field Reversal by Relativistic Electrons Which Slow Down While Circulating in a Uniform Impressed Magnetic Field

机译:相对论性电子逆转磁场,相对论性电子在均匀外加磁场中循环时会减速。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The prior restriction to conservative motion of the electrons has been removed, but scattering has still been neglected. The rate of energy loss has been used to derive the stationary distribution over a range of energy (or momentum) and canonical angular momentum for an arbitrary magnetic field distribution. A necessary ingredient is the retardation of the electrons; the radiative component of this has been estimated, but not included; the dynamical friction component, arising from motion through a uniform, fully ionized plasma, has been used as the sole contributor to energy loss. This friction also affects the canonical angular momentum and the latter's change in one cycle relative to the energy change has been formulated. Maxwell's equation connecting magnetic field with current density, applied to the stationary distribution, has permitted the formulation of the relation between field and the other variables. This completes the number of relations required to determine the magnetic field (eigenfunction) arising from a given rate of electron injection (eigenvalue): The trajectory equations have been derived. It has been necessary to picture physically the complete evolution of a trajectory from injection to stopping, both to understand what the mathematics says and to devise an adequate machine program. When field reversal occurs, then just before the electrons die, the electron swarm divides into two counter‐rotating eddies. Two iterative solution techniques have been used to calculate the field distributions for a range of initial energies, field strengths, and injection rates. A striking result is that once reversal of field occurs by increasing the injection rate, it is generally true that the reversed field varies little, but the layer becomes progressively thinner as the injection rate increases further. At some rate the layer thickness passes through zero and thereafter the injection radius lies not at the apocenter of the initial trajectory but-n at the pericenter, the layer protruding from its prior position. For full‐energy radii of gyration which are less than about one‐third the injection radius, anomaolus solutions appear which are unstable. A number of aspects of the problem of incorporating an E layer into a thermonuclear device are briefly discussed, namely, the effect of scattering, the possibility of two‐beam instability, the injection of the electrons, effects of end reflection in a finite‐length layer, electrodynamic effects, and plasma diamagnetism.
机译:已经消除了对电子保守运动的先前限制,但是仍然忽略了散射。能量损失率已用于推导在一定范围的能量(或动量)和规范角动量范围内的平稳分布,以获取任意磁场分布。一个必要的成分是电子的阻滞。已经估计了其中的辐射成分,但未包括在内;通过均匀的,完全电离的等离子体运动产生的动摩擦分量已被用作导致能量损失的唯一因素。这种摩擦力也会影响规范角动量,并且已经制定了规范角动量相对于能量变化的一个周期的变化。麦克斯韦方程将磁场与电流密度联系起来,并应用到平稳分布中,从而可以得出磁场与其他变量之间的关系。这样就完成了确定由给定的电子注入速率(特征值)引起的磁场(特征函数)所需的关系数:推导了轨迹方程。有必要从物理上描绘出从注射到停止的轨迹的完整演变过程,以了解数学的含义并设计适当的机器程序。当发生电场反转时,正好在电子死亡之前,电子群分为两个反向旋转的涡流。两种迭代求解技术已用于计算一系列初始能量,场强和注入速率的场分布。惊人的结果是,一旦通过增加注入速率发生了电场反转,通常确实会发生反向电场变化不大的情况,但是随着注入速率的进一步提高,该层将逐渐变薄。层的厚度以某种速率穿过零,然后注入半径不位于初始轨迹的中心,而是位于周边中心,n从其先前位置伸出。当旋转的全能半径小于注入半径的三分之一时,就会出现不稳定的异常溶液。简要讨论了将E层结合到热核器件中的问题的许多方面,即散射的影响,两束不稳定性的可能性,电子的注入,有限长度内的末端反射的影响层,电动力效应和等离子体反磁性。

著录项

  • 来源
    《Journal of Applied Physics》 |1962年第6期|共13页
  • 作者

    Tonks Lewi;

  • 作者单位

    Lawrence Radiation Laboratory, University of California, Livermore, California;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号