首页> 外文期刊>Journal of Applied Physics >Structural Investigation of Noncrystalline Nickel‐Phosphorus Alloys
【24h】

Structural Investigation of Noncrystalline Nickel‐Phosphorus Alloys

机译:非晶态镍磷合金的结构研究

获取原文
获取原文并翻译 | 示例
           

摘要

The structure of noncrystalline electrodeposited NiP alloys, 73.8–81.4 at.% Ni, has been investigated by x-ray scattering and by physical density measurements. The x-ray interference functions, I(k), are qualitatively inconsistent with those calculated for fcc-, hcp-, and Ni3P-type crystallites. Calculated radial distribution functions RDF(r) indicate that the alloys have a better defined short-range order than that observed in liquid noble metals above their melting points. The observed I(k) are very similar to the I(k) calculated by Dixmier, Doi, and Guinier [in Physics of Noncrystalline Solids, J. A. Prins, Ed. (North-Holland Publ. Co., Amsterdam, 1965), p. 67] from their model. However, the parameters needed to fit the experimental results are inconsistent with the atomic sizes expected for nickel and phosphorus. The noncrystalline alloys are between 0.6% and 1.4% less dense than the corresponding mixtures of fcc Ni and Ni3P, both of which are essentially close packed. A grain boundary density deficit model has been developed which relates the fractional density difference between the microcrystalline and macrocrystalline forms of a close-packed metal to the minimum average microcrystal grain size. The fractional density differences of between 0.6% and 1.4% observed for the noncrystalline NiP alloys would correspond to minimum average microcrystal grain sizes D of between 133 and 57 Å. Stored elastic energy calculations indicate that rms strains 2>1/2 greater than 0.03 and due to simple compressive and dilatory stresses are inconsistent with the reported energy of transformation of noncrystalline NiP to crystalline nickel and Ni3P. Crystallite size broadening with D≥57 Å and strain broadening with 2>1/2≤0.03 are insufficient to produce fcc, hcp, or Ni3P model I(k) consistent with the observed NiP I(k). The high densities of the noncrystalline NiP alloys suggest that the alloys have a continuous structure rather than one in which internal boundaries separate small well-ordered regions. These limitations on structural models for noncrystalline NiP alloys may apply to the other noncrystalline metallic alloys with similar diffraction patterns.
机译:通过X射线散射和物理密度测量研究了非晶态电沉积NiP合金(73.8–81.4 at。%Ni)的结构。 X射线干扰函数I(k)在质量上与针对fcc型,hcp型和Ni3P型微晶的计算不一致。计算得出的径向分布函数RDF(r)表明,与在熔点以上的液态贵金属中观察到的合金相比,该合金具有更好的定义的短程有序。所观察到的I(k)与Dixmier,Doi和Guinier [在《非晶体固体的物理学》,J.A.Prins,Ed。 (North-Holland Publ.Co.,阿姆斯特丹,1965年),p.1。 67]。但是,适合实验结果所需的参数与镍和磷的预期原子尺寸不一致。非晶态合金的密度比fcc Ni和Ni3P的相应混合物密度低0.6%至1.4%,fcc Ni和Ni3P基本上密堆积。已经开发出晶界密度缺陷模型,该模型将紧密堆积的金属的微晶和大晶形式之间的分数密度差与最小平均微晶晶粒尺寸相关联。对于非晶态NiP合金观察到的0.6%至1.4%的分数密度差将对应于133至57Å的最小平均微晶粒径D。储存的弹性能计算表明,均方根应变2> 1/2 大于0.03,并且由于简单的压缩应力和扩张应力与所报道的非结晶NiP转变为结晶镍和Ni3P的能量不一致。 D≥57Å的晶粒尺寸展宽和2> 1 /2≤0.03的应变展宽不足以产生与观察到的NiPI(k)一致的fcc,hcp或Ni3P模型I(k) )。非晶态NiP合金的高密度表明该合金具有连续结构,而不是内部边界分隔小的有序区域的结构。非晶态NiP合金在结构模型上的这些限制可能适用于其他具有类似衍射图样的非晶态金属合金。

著录项

  • 来源
    《Journal of Applied Physics》 |1970年第1期|共18页
  • 作者

    Cargill G. S.;

  • 作者单位

    Gordon McKay Laboratory, Harvard University, Cambridge, Massachusetts 02138;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号