...
首页> 外文期刊>Journal of Applied Physics >Perturbation Theory for Electromagnetic Coupling to Elastic Surface Waves on Piezoelectric Substrates
【24h】

Perturbation Theory for Electromagnetic Coupling to Elastic Surface Waves on Piezoelectric Substrates

机译:压电基板上电磁耦合到弹性表面波的摄动理论

获取原文
获取原文并翻译 | 示例

摘要

Starting from the fundamental acoustic and electromagnetic field equations an approximate expression is obtained for the perturbation in propagation wavenumber of a surface acoustic wave in a piezoelectric crystal. The source of perturbation is taken to be a surface spaced an air‐gap distance h above the piezoelectric and is described in terms of an electrical impedance. The resulting perturbation is found in terms of the perturbing electrical impedance, an effective dielectric constant for the piezoelectric, the air‐gap spacing h, and a perturbation coupling constant defined in terms of the unperturbed electric potential at the piezoelectric surface and the average acoustic power flow per unit frequency. The theory is applied to the case of a short‐circuit perturbing surface and found to be in excellent agreement with certain numerical results for Y‐cut Z‐propagating LiNbO3 and several cuts of Bi12 GeO20. In the general case of a complex perturbing impedance, such as that exhibited by a semiconductor, the theory indicates that attenuation or gain and dispersion may be introduced by the perturbation, in close agreement with experimental observations.
机译:从基本声场和电磁场方程开始,获得了压电晶体中表面声波的传播波数扰动的近似表达式。摄动源被认为是一个距离压电材料上方空气间隙h的表面,并以电阻抗的形式描述。由此产生的扰动是根据扰动电阻,压电的有效介电常数,气隙间距h和扰动耦合常数确定的,扰动耦合常数由压电表面的无扰动电位和平均声功率定义单位频率流量。该理论适用于短路扰动表面的情况,发现与Y形切割Z传播LiNbO3和Bi12 GeO20的多个切割的某些数值结果非常吻合。在复杂的扰动阻抗(例如半导体所表现出的阻抗)的一般情况下,该理论表明,扰动可能会引入衰减或增益和色散,与实验观察结果非常吻合。

著录项

  • 来源
    《Journal of Applied Physics 》 |1971年第3期| 共8页
  • 作者

    Lakin K. M.;

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号