...
首页> 外文期刊>Journal of Applied Physics >Stationary charge transport in metal‐semiconductor‐metal (MSM) structures
【24h】

Stationary charge transport in metal‐semiconductor‐metal (MSM) structures

机译:金属-半导体-金属(MSM)结构中的固定电荷传输

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Important physical processes affecting charge transport in the metal‐semiconductor‐metal (MSM) structure have been studied from the diffusion theory point of view, in combination with boundary conditions based on thermionic emission theory. At current densities exceeding about 0.1 A cm-2, the stationary unipolar charge transport of injected charge carriers, to which the problem reduces if thermal and avalanche generation of electron‐hole pairs can be neglected, is described by the conduction current equation and Poisson''s equation. Charge conduction through a semiconductor with nonuniform electric field and mobile‐charge distribution is described using the low‐field diffusion constant and field‐dependent mobility. The current‐dependent concentration of mobile charges at the M‐S interfaces represent the boundary conditions. Physical processes in four MSM structures (PtSi‐n SiPtSi), differing in doping concentration (ND = 4.4 and 12 × 1014 cm-3) and semiconductor width (L = 4 and 10 μm), have been investigated numerically at two different temperatures (Tc = 300 and 423°K). At current densities exceeding about 5 A cm-2, the investigated structures can be regarded as trap free, if they have a semiconductor trap density of the order of 1012 cm-3 or lower. The diffusion and space charge of injected carriers significantly affect the electrical characteristics of the structures. Depending on the semiconductor temperature, donor concentration, and current density, the width of the diffusion‐affected region of the semiconductor varies from 0.2 to 0.8 μm. At small current densities, the structure current increases exponentially with applied voltage; at current densities exceeding 1–5 A cm-2, this current increase is significantly reduced because of the space-n‐charge effect of the mobile carriers. For still greater applied voltages, the I‐V characteristic levels off almost completely. In comparison with the room‐temperature characteristic, the high‐temperature characteristic is shifted towards slightly lower voltages at small currents, while the large space‐charge effect of the mobile carriers at high current levels can cause these I‐V characteristics to intersect.
机译:从扩散理论的角度,结合基于热电子发射理论的边界条件,研究了影响金属-半导体-金属(MSM)结构中电荷传输的重要物理过程。当电流密度超过0.1 A cm-2时,注入的电荷载流子的静态单极电荷传输通过传导电流方程和Poisson'描述,如果可以忽略电子-空穴对的热和雪崩生成,问题将减轻。的方程式。使用低场扩散常数和场相关迁移率描述了通过具有不均匀电场和移动电荷分布的半导体进行的电荷传导。 M-S接口上与电流有关的移动电荷浓度代表边界条件。在两种不同的数值研究了四种MSM结构(PtSi-nSiPtSi)的物理过程,掺杂浓度(ND = 4.4和12×1014 cm-3)和半导体宽度(L = 4和10μm)不同温度(Tc = 300和423°K)。在电流密度超过约5 A cm-2的情况下,如果所研究的结构的半导体陷阱密度约为1012 cm-3或更低,则可以视为无陷阱。注入的载流子的扩散和空间电荷显着影响结构的电特性。取决于半导体温度,施主浓度和电流密度,半导体扩散影响区域的宽度在0.2到0.8μm之间变化。在较小的电流密度下,结构电流随施加的电压呈指数增长;在电流密度超过1-5 A cm-2时,由于移动载流子的空间n电荷效应,电流增加明显减小。对于更大的施加电压,IV特性几乎完全趋于平稳。与室温特性相比,高温特性在小电流时向较低的电压偏移,而在高电流水平下移动载波的大空间电荷效应会导致这些I-V特性相交。

著录项

  • 来源
    《Journal of Applied Physics》 |1973年第10期|共9页
  • 作者

    Elamp;

  • 作者单位

    Department of Electrical Engineering, The University of Alberta, Edmonton, Alberta T6G 2E1 Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号