...
首页> 外文期刊>Journal of Applied Physics >Computational models for ductile and brittle fracture
【24h】

Computational models for ductile and brittle fracture

机译:韧性和脆性断裂的计算模型

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Computational models of dynamic ductile and brittle fracture are developed for wave propagation in one‐ and two‐dimensional geometries. The model features have been taken mainly from detailed observations of samples partially fractured during impacts, but the functional forms are consistent with theoretical results where applicable. Basic features of the models are the nucleation and growth (hence, the acronym NAG for the models) of voids or cracks, and the stress relaxation resulting from the growing damage. The results of the calculations include number and sizes of cracks, voids, or fragments as a function of position in the material. The NAG analysis presents the nucleation law, determined from experiment, and two growth laws: both growth and nucleation are functions of stress and stress duration. Procedures for treating cracks with a range of sizes and orientation are presented with the method for computing the stress relaxation that accompanies growth of damage. Brittle fracture is essentially anisotropic in actuality and in the model: cracks nucleate and grow as a function of stress normal to their plane, and the stress relaxation is a function of crack opening in the direction of the stress. Criteria are presented for the coalescence of cracks to form fragments and for complete fragmentation. The computational models have been applied to one‐ and two‐dimensional wave propagation problems. The NAG models have been shown to be applicable to several metals, a plastic, and a quartzite, to stress levels from just above threshold to ten times the threshold, and to load durations from 20 nsec to several microseconds. The damage has been computed for stress waves caused by impact, thermal radiation, and explosion.
机译:建立了动态​​延性和脆性断裂的计算模型,以用于一维和二维几何形状中的波传播。该模型的特征主要来自对撞击过程中部分破裂的样品的详细观察,但在可行的情况下,其功能形式与理论结果一致。模型的基本特征是空隙或裂缝的形核和生长(因此,模型的首字母缩写为NAG),以及由于损伤增加而引起的应力松弛。计算结果包括裂纹,空隙或碎片的数量和大小,它们是材料中位置的函数。 NAG分析显示了由实验确定的成核规律,以及两个生长规律:生长和成核都是应力和应力持续时间的函数。通过计算伴随损伤增长的应力松弛的方法,介绍了用于处理各种尺寸和方向的裂纹的程序。脆性断裂实际上在模型中实际上是各向异性的:裂纹成核并根据其平面法向应力增长,而应力松弛则是裂纹在应力方向上的作用。提出了裂纹合并形成碎片和完全碎裂的标准。计算模型已应用于一维和二维波传播问题。 NAG模型已显示适用于多种金属,塑料和石英岩,应力水平从刚好超过阈值到阈值的十倍,并且载荷持续时间从20 ns到几微秒。计算出了冲击,热辐射和爆炸引起的应力波的破坏程度。

著录项

  • 来源
    《Journal of Applied Physics》 |1976年第11期|P.4814-4826|共13页
  • 作者

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号