...
首页> 外文期刊>Journal of Applied Physics >Operation of near ideal spectroscopic heat pipes
【24h】

Operation of near ideal spectroscopic heat pipes

机译:近理想光谱热管的操作

获取原文

摘要

An analytical model has been developed to describe the operation of simple and concentric gas‐loaded heat pipes and to assess the extent of deviations from ideal behavior due to diffusion, viscosity, and sonic flow. The model predicts, with reasonable accuracy, the start‐up power, the maximum heat transport, and the thermal regulation (=Δ density/Δ input power). Experimental results will be presented for Li/He heat pipes. This approximate analytical model should enable spectroscopic and kinetic heat pipe users to design and operate heat pipes optimally without extensive and costly computer solutions of the full Navier‐Stokes equations. The model is based on approximate solutions of diffusion/convection equations, in which the convective velocity distribution of a nearly ideal hat pipe is assumed to be identical to that of an ideal heat pipe. The vapor is treated as a one‐dimensional compressible fluid. Among the more important results are (1) The start‐up power QSU, defined as the power required to bring the metal vapor density to 95% of n0, the stagnation density, at the exit of the heated zone (or adiabatic zone if present) is virtually independent of n0. (2) For a heat pipe whose thermal losses are dominated by radiation, the start‐up power varies as T9/40, where T0, the stagnation temperature, is defined by n(T0)=n0. (3) The sonic flow limit QCF may be approximated as QCF= 1/2 hfg An0c(T0), where hfg is the heat of vaporization per atom, A is the cross‐sectional area, and c(T0) is the speed of sound at T0. (4) The thermal regulation properties of a concentric heat pipe may be approximated from the thermal regulation properties of simple heat pipes.
机译:已经开发出一种分析模型来描述简单且同心的燃气热管的运行,并评估由于扩散,粘度和声波流动而偏离理想行为的程度。该模型以合理的精度预测启动功率,最大热量传输和热调节(=Δ密度/Δ输入功率)。将给出锂/氦热管的实验结果。这种近似的分析模型应使光谱和动态热管用户能够最佳地设计和操作热管,而无需使用完整且昂贵的完整Navier-Stokes方程的计算机解决方案。该模型基于扩散/对流方程的近似解,其中假设近似理想的帽管的对流速度分布与理想热管的对流速度分布相同。蒸气被视为一维可压缩流体。在更重要的结果中有(1)启动功率QSU,其定义为在加热区(或绝热区,如果存在)的出口使金属蒸气密度达到n0的95%(停滞密度)所需的功率。 )实际上独立于n0。 (2)对于热损失主要由辐射引起的热管,启动功率随T9 / 40变化,其中停滞温度T0由n(T0)= n0定义。 (3)声波极限QCF可以近似为QCF = 1/2 hfg An0c(T0),其中hfg是每个原子的汽化热,A是横截面积,c(T0)是速度在T0发出声音。 (4)同心热管的热调节特性可以从简单热管的热调节特性中近似得出。

著录项

  • 来源
    《Journal of Applied Physics 》 |1980年第8期| P.4059-4069| 共11页
  • 作者

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号