首页> 外文期刊>Journal of Applied Physics >Temperature variation of acoustic attenuation and nonlinearity constant in Ge and GaAs
【24h】

Temperature variation of acoustic attenuation and nonlinearity constant in Ge and GaAs

机译:Ge和GaAs中声衰减的温度变化和非线性常数

获取原文
获取外文期刊封面目录资料

摘要

The temperature dependence of the nonlinearity constant in pure germanium has been estimated for longitudinal waves along [110] and [111] directions and for shear waves along [110] direction with polarization along [11¯0] and [001] directions in the temperature range 25–293 K. The nonlinearity constant estimated from second order elastic constants and third order elastic constants has been further used to evaluate the ultrasonic attentuation at 475 MHz in Ge for (i) longitudinal waves along the [110] direction and (ii) for shear waves along the [110] directions. We have also estimated the nonlinearity constant and ultrasonic attenuation for longitudinal waves at 306 MHz along the [111] direction. The estimated values of attenuation have been compared with the experimental values of attenuation available in the literature. They are found to be in good agreement with the experimental values. The estimated values of nonlinearity constant increases with temperature for longitudinal waves whereas it shows a negative temperature coefficient for shear waves. The results are similar for Si and Cu. The nonlinearity constant for GaAs at 298 K is estimated from elastic moduli data for longitudinal waves along [111] direction and for shear waves along [110] direction with polarization along [001] direction and then the frequency dependence of ultrasonic attenuation have been estimated. Comparison with the experimental values available in literature shows that the results are quite satisfactory. It is worthwhile to mention that the Mason’s nonlinearity constant D is deceptively similar to the nonlinearity parameter β defined by Breazeale and coworkers. The nonlinearity constant D is evaluated from the knowledge of the Gruneisen number γ ji for various modes and directions and other data, whereas the nonlinearity parameter β is the negative ratio of coefficients of nonlinear term to the linear term of the (d-nissipationless) nonlinear wave equation. Both D and β are in general temperature dependent.
机译:对于沿着温度在[110]和[111]方向上的纵波以及沿着[110]方向和[001]方向极化的剪切波[110]方向,估计了纯锗中非线性常数的温度依赖性。从二阶弹性常数和三阶弹性常数估计的非线性常数已被进一步用于评估475 MHz在Ge中对(i)沿[110]方向的纵波和(ii)的超声衰减。沿[110]方向的剪切波。我们还估计了沿[111]方向的306 MHz纵波的非线性常数和超声衰减。已将衰减的估计值与文献中提供的衰减的实验值进行了比较。发现它们与实验值非常吻合。对于纵波,非线性常数的估计值随温度而增加,而对于横波,非线性常数的估计值显示为负温度系数。 Si和Cu的结果相似。从沿[111]方向的纵波和沿[001]方向极化的沿[110]方向的剪切波的弹性模量数据,可以估算出298 K下GaAs的非线性常数,然后估算出超声波衰减的频率依赖性。与文献中的实验值进行比较表明,结果是令人满意的。值得一提的是,梅森的非线性常数D在外观上与Breazeale及其同事定义的非线性参数β相似。非线性常数D是根据各种模式和方向以及其他数据的Gruneisen数γji的知识进行评估的,而非线性参数β是非线性项与(d-nissipationless)非线性项的线性项的负比。波动方程。 D和β通常都与温度有关。

著录项

  • 来源
    《Journal of Applied Physics》 |1984年第5期|P.1333-1337|共5页
  • 作者

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号