...
首页> 外文期刊>Journal of Applied Physics >Ultraviolet versus infrared: Effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas
【24h】

Ultraviolet versus infrared: Effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas

机译:紫外线与红外线:烧蚀激光波长对激光诱导等离子体向一大气压氩气膨胀的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Laser-induced plasma from an aluminum target in one-atmosphere argon background has been investigated with ablation using nanosecond ultraviolet (UV: 355 nm) or infrared (IR: 1064 nm) laser pulses. Time- and space-resolved emission spectroscopy was used as a diagnostics tool to have access to the plasma parameters during its propagation into the background, such as optical emission intensity, electron density, and temperature. The specific feature of nanosecond laser ablation is that the pulse duration is significantly longer than the initiation time of the plasma. Laser-supported absorption wave due to post-ablation absorption of the laser radiation by the vapor plume and the shocked background gas plays a dominant role in the propagation and subsequently the behavior of the plasma. We demonstrate that the difference in absorption rate between UV and IR radiations leads to different propagation behaviors of the plasma produced with these radiations. The consequence is that higher electron density and temperature are observed for UV ablation. While for IR ablation, the plasma is found with lower electron density and temperature in a larger and more homogenous axial profile. The difference is also that for UV ablation, the background gas is principally evacuated by the expansion of the vapor plume as predicted by the standard piston model. While for IR ablation, the background gas is effectively mixed to the ejected vapor at least hundreds of nanoseconds after the initiation of the plasma. Our observations suggest a description by laser-supported combustion wave for the propagation of the plasma produced by UV laser, while that by laser-supported detonation wave for the propagation of the plasma produced by IR laser. Finally, practical consequences of specific expansion behavior for UV or IR ablation are discussed in terms of analytical performance promised by corresponding plasmas for application with laser-induced breakdown spectroscopy.
机译:已经通过使用纳秒级紫外线(UV:355 nm)或红外线(IR:1064 nm)激光烧蚀研究了在一个大气压氩气背景下铝靶材产生的激光诱导等离子体。时间和空间分辨发射光谱用作诊断工具,可在等离子体传播到背景过程中访问等离子体参数,例如光发射强度,电子密度和温度。纳秒激光烧蚀的特定特征是脉冲持续时间明显长于等离子体的起始时间。由于蒸汽羽流和受激的背景气体对激光辐射的后消融吸收,激光支持的吸收波在等离子体的传播及随后的行为中起主要作用。我们证明了紫外线和红外线辐射之间吸收率的差异会导致这些辐射产生的等离子体具有不同的传播行为。结果是观察到较高的电子密度和温度可用于UV烧蚀。在进行红外消融时,发现等离子体具有较低的电子密度和较低的温度,且轴向分布更大且更均匀。区别还在于,对于UV消融,背景气体主要通过标准活塞模型预测的蒸汽羽流膨胀来抽空。在进行红外消融时,背景气体至少在等离子体激发后至少数百纳秒内有效地混合到喷射的蒸气中。我们的观察结果表明,用激光支持的燃烧波来描述由UV激光产生的等离子体的传播,而用激光支持的爆炸波来描述由IR激光器产生的等离子体的传播。最后,根据相应等离子体在激光诱导击穿光谱技术上的应用所承诺的分析性能,讨论了针对UV或IR烧蚀的特定膨胀行为的实际后果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号