首页> 外文期刊>Journal of Applied Physics >Atomic coordinates and polarization map around a pair of 1/2a[011] dislocation cores produced by plastic deformation in relaxor ferroelectric PIN-PMN-PT
【24h】

Atomic coordinates and polarization map around a pair of 1/2a[011] dislocation cores produced by plastic deformation in relaxor ferroelectric PIN-PMN-PT

机译:原子坐标 和 围绕一对 1 / 2a的 偏振 地图 通过 在 弛豫铁电 PIN- PMN-PT 的塑性变形 产生的 [011] 位错 核心

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The core structures of dislocations are crucial for understanding the plastic deformation mechanisms and the functional properties of materials. Here, we use the scanning transmission electron microscopy imaging techniques of high-resolution high angle annular dark field and integrated differential phase contrast to investigate the atomic structure of a pair of climb-dissociated 1/2a[011] dislocations in a bending-deformed relaxor ferroelectric Pb(In_(1/2)Nb_(1/2))O_3-Pb(Mg_(1/3)Nb_(1/3))O_3-PbTiO_3 single crystal. Cations at one dislocation core are found to arrange in the same way as the climb-dissociated 1/2a[011] dislocation core in SrTiO_3, while the other one is different. Oxygen depletion was observed at both dislocation cores. Geometric phase analysis of the lattice rotation shows opposite signs at both sides of the dislocations, demonstrating the strain gradient, which is known to give rise to flexoelectric polarization. Using the peak finding method, the polarization (a combination of ferroelectric and flexoelectric) around dislocations was mapped at the unit-cell scale. The polarization direction obtained is consistent with that predicted based on the flexoelectric effect in a perovskite oxide with [011] geometry. Head-to-head positively charged and tail-to-tail negatively charged domain walls were revealed based on the polarization map, suggesting a new way to stabilize charged domain walls via dislocations. A distinct dislocation core configuration has been observed, and a unit-cell scale polarization map helps understand the flexoelectric effects (coupling between strain gradient and polarization) around dislocations in a relaxor ferroelectric.
机译:脱位的核心结构对于了解塑性变形机制和材料的功能性质至关重要。在这里,我们使用高分辨率高角度环形暗场和集成差分相位对比度的扫描透射电子显微镜成像技术,以研究弯曲变形的松弛剂中的一对爬积的1 / 2a的原子结构铁电PB(IN_(1/2)NB_(1/2))O_3-PB(MG_(1/3)NB_(1/3))O_3-PBTIO_3单晶。发现一个位错核心的阳离子以与SRTIO_3中的爬降解离1 / 2a [011]脱位核心相同的方式排列,而另一个是不同的。在脱位核心中观察到氧气耗尽。晶格旋转的几何相位分析显示了位错两侧的相对迹象,证明了已知的应变梯度,这是已知产生柔性释电极化。使用峰值发现方法,在单位细胞比例下映射围绕脱位围绕脱位的偏振(铁电和柔性电解的组合。所获得的偏振方向与基于钙钛矿氧化物中的柔性电效应的偏振效应一致。基于偏振图揭示了头部到头积极带电和尾部带负电的畴壁,表明通过位错稳定带电畴壁的新方法。已经观察到不同的错位核心配置,并且单位小区级偏振图有助于了解围绕松弛剂铁电的脱位围绕位错的挠度电效应(应变梯度和极化之间的耦合)。

著录项

  • 来源
    《Journal of Applied Physics》 |2021年第23期|234101.1-234101.7|共7页
  • 作者单位

    School of Aerospace Mechanical and Mechatronic Engineering The University of Sydney Sydney NSW 2006 Australia Australian Centre for Microscopy and Microanalysis The University of Sydney Sydney NSW 2006 Australia Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and BIST Campus UAB Bellaterra Barcelona Catalonia 08193 Spain;

    School of Aerospace Mechanical and Mechatronic Engineering The University of Sydney Sydney NSW 2006 Australia Australian Centre for Microscopy and Microanalysis The University of Sydney Sydney NSW 2006 Australia;

    Aerospace Division Defence Science and Technology Group Port Melbourne VIC 3207 Australia;

    US Naval Research Laboratory Washington DC 20375 USA;

    School of Aerospace Mechanical and Mechatronic Engineering The University of Sydney Sydney NSW 2006 Australia Australian Centre for Microscopy and Microanalysis The University of Sydney Sydney NSW 2006 Australia;

    School of Aerospace Mechanical and Mechatronic Engineering The University of Sydney Sydney NSW 2006 Australia Australian Centre for Microscopy and Microanalysis The University of Sydney Sydney NSW 2006 Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号