...
首页> 外文期刊>Journal of Applied Physics >Dielectric elastomer actuators
【24h】

Dielectric elastomer actuators

机译:介电弹性体执行器

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Dielectric elastomer actuators (DEAs) are soft, electrically powered actuators that have no discrete moving parts, yet can exhibit large strains (10%-50%) and moderate stress (~100kPa). This Tutorial describes the physical basis underlying the operation of DEA's, starting with a simple linear analysis, followed by nonlinear Newtonian and energy approaches necessary to describe large strain characteristics of actuators. These lead to theoretical limits on actuation strains and useful non-dimensional parameters, such as the normalized electric breakdown field. The analyses guide the selection of elastomer materials and compliant electrodes for DEAs. As DEAs operate at high electric fields, this Tutorial describes some of the factors affecting the Weibull distribution of dielectric breakdown, geometrical effects, distinguishing between permanent and "soft" breakdown, as well as "self-clearing" and its relation to proof testing to increase device reliability. New evidence for molecular alignment under an electric field is also presented. In the discussion of compliant electrodes, the rationale for carbon nanotube (CNT) electrodes is presented based on their compliance and ability to maintain their percolative conductivity even when stretched. A procedure for making complaint CNT electrodes is included for those who wish to fabricate their own. Percolative electrodes inevitably give rise to only partial surface coverage and the consequences on actuator performance are introduced. Developments in actuator geometry, including recent 3D printing, are described. The physical basis of versatile and reconfigurable shape-changing actuators, together with their analysis, is presented and illustrated with examples. Finally, prospects for achieving even higher performance DEAs will be discussed.
机译:介电弹性体致动器(褥子)是软,电动动力致动器,其没有离散的运动部件,但可以表现出大菌株(10%-50%)和中等应力(〜100kpa)。本教程描述了DEA的操作的基础,从简单的线性分析开始,然后是非线性牛顿和能量方法来描述致动器的大应变特性。这些导致致动菌株和有用的非尺寸参数的理论限制,例如归一化的电击场。分析指导选择弹性体材料和符合褥子的电极。由于诸如在高电场运营时,本教程描述了影响介电故障,几何效果,区分永久性和“软”故障的威布尔分布的一些因素,以及“自我清除”及其与证明测试的关系提高设备可靠性。还提出了电场下的分子对准的新证据。在符合电极的讨论中,基于它们的顺应性和能够即使在拉伸时保持其渗透电导率的能力,呈碳纳米管(CNT)电极的基本原理。为那些希望制造自己的人提供投诉CNT电极的程序。渗透电极不可避免地引起部分表面覆盖,并引入了对致动器性能的后果。描述了在包括近期3D打印的致动器几何的发展。通过实施例呈现和示出了多种和可重新配置的形状改变致动器的物理基础和分析。最后,将讨论实现甚至更高的性能饮食的前景。

著录项

  • 来源
    《Journal of Applied Physics》 |2021年第15期|151102.1-151102.38|共38页
  • 作者单位

    School of Engineering and Applied Sciences Harvard University Cambridge Massachusetts 02138 USA;

    School of Engineering and Applied Sciences Harvard University Cambridge Massachusetts 02138 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号