...
首页> 外文期刊>Journal of Applied Physics >Ultrahigh adhesion between carbon nanotube and free-standing monolayer graphene
【24h】

Ultrahigh adhesion between carbon nanotube and free-standing monolayer graphene

机译:碳纳米管和独立式单层石墨烯之间的超高附着力

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Using a self-prepared individual carbon nanotube (CNT) mechanical force sensor, we measured the adhesion between CNT and free-standing monolayer graphene and other bulk substrates. All the measurements were made by using the same CNT force sensor under the same conditions, such as moving speed, observation angle, temperature, and vacuum pressure, confirming the reliability and accuracy of experimental data. The adhesion at contact is proportional to the deformation of the curved CNT, which can be directly measured in a scanning electron microscope. It was found that the deformation of CNT was the largest on the suspended graphene, showing that the suspended graphene has the largest adhesion on CNT. This unusually high adhesion on suspended monolayer graphene is related to the low bending stiffness and extreme flexibility of this atomically thin layer. The main contribution of this work is to demonstrate the unusually high adhesion on suspended graphene experimentally. More advanced modeling needs complicated molecular dynamics simulation and surface energy computation in our future work.
机译:使用自制备的单独的碳纳米管(CNT)机械力传感器,我们测量了CNT和独立式单层石墨烯和其他散装基材之间的粘附性。通过在相同条件下使用相同的CNT力传感器,例如移动速度,观察角度,温度和真空压力,确认实验数据的可靠性和准确性来制备所有测量。接触处的粘附性与弯曲CNT的变形成比例,其可以在扫描电子显微镜中直接测量。发现CNT的变形是悬浮石墨烯上最大的,表明悬浮的石墨烯在CNT上具有最大的粘附性。在悬浮的单层石墨烯上具有异常高的附着力与该原子薄层的低弯曲刚度和极端柔韧性有关。这项工作的主要贡献是在实验上展示悬浮石墨烯的异常高附着力。更先进的建模需要在未来的工作中需要复杂的分子动力学模拟和表面能量计算。

著录项

  • 来源
    《Journal of Applied Physics》 |2021年第4期|044304.1-044304.6|共6页
  • 作者单位

    Beijing Institute of Spacecraft System Engineering Beijing 100080 People's Republic of China;

    Beijing Institute of Spacecraft System Engineering Beijing 100080 People's Republic of China;

    Beijing Institute of Spacecraft System Engineering Beijing 100080 People's Republic of China;

    Department of Engineering Mechanics Tsinghua University Beijing 100084 People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号