...
首页> 外文期刊>Journal of Applied Physics >Demonstration of highly repeatable room temperature negative differential resistance in large area AlN/GaN double-barrier resonant tunneling diodes
【24h】

Demonstration of highly repeatable room temperature negative differential resistance in large area AlN/GaN double-barrier resonant tunneling diodes

机译:大面积AlN / GaN双屏障共振隧道二极管中高度可重复室温负差分性的演示

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Here, we present a systematical investigation of AlN/GaN double-barrier resonant tunneling diodes (RTDs) grown by plasma-assisted molecular beam epitaxy on metal-organic chemical vapor deposition GaN-on-sapphire templates. The processed devices featured an active region composed of 2.5 nm GaN quantum well sandwiched by two 1.5 nm AlN barriers and RTD mesa diameter ranging from 1 to 20 μm. Room temperature current-voltage characteristics exhibited a repeatable negative differential resistance (NDR) free of degradation and hysteresis after 1000 times subsequently up-to-down voltage sweeps across different sizes. High peak-to-valley current ratios of 1.93 and 1.58 were obtained at room temperature for 1 and 12μm diameter devices, respectively, along with peak current densities of 48 and 36 kA/cm~2 corresponding to peak voltages of 4.65 and 5.9 V. The peak current density decreased quickly initially and then was less susceptible to this averaging effect with increasing the device diameter. Temperature-dependent measurements revealed that the valley current density displayed a positive relationship to the temperature, and an abruptly increasement was observed for the devices with a diameter of 20 μm when the temperature rose over 230 K. We attributed this abnormal phenomenon to the increased contribution from acoustic and longitudinal optical (LO) phonon scattering, especially for the LO phonon scattering. The area dependence of electrical performance suggested that the leakage pathway through dislocations played a vital role for charge transport and there existed a threshold of dislocation density for NDR characteristics. These results promote further study for future implementation of Ⅲ-nitride-based RTD oscillators into high-frequency and high-power terahertz radiation.
机译:在这里,我们介绍了通过等离子体辅助分子束外延生长的ALN / GaN双阻隔共振隧道二极管(RTDS)对金属 - 有机化学气相沉积GaN-On-Apphire模板的系统调查。加工的装置以2.5nm GaN量子晶体组成的有源区,其夹在两个1.5nm Aln屏障中,RTD MESA直径为1至20μm。室温电流 - 电压特性在随后在不同尺寸的上下电压扫描1000倍后,无可重复的负差分电阻(NDR)无劣化和滞后。 1.93和1.58的高峰峰谷电流量分别在室温下获得1和12μm直径的装置,以及48和36ka / cm〜2的峰值电流密度对应于4.65和5.9 V的峰值电压。最初峰值电流密度快速降低,然后与增加器件直径的平均效果较小。温度依赖性测量表明,谷电流密度显示与温度的阳性关系,并且当温度上升超过230k时,直径为20μm的器件,观察到突然的增加。我们将这种异常现象归因于增加的贡献从声学和纵向光学(LO)声子散射,尤其是对于LO Phonon散射。电气性能的面积依赖性表明,通过脱位泄漏通路对电荷传输发挥了至关重要的作用,并且存在NDR特性的位错密度阈值。这些结果促进了Ⅲ-氮化物的RTD振荡器的未来实施进一步研究了高频和高功率的太赫兹辐射。

著录项

  • 来源
    《Journal of Applied Physics》 |2021年第1期|014502.1-014502.10|共10页
  • 作者单位

    Key Laboratory of Wide Band Gap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

    Key Laboratory of Wide Band Gap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

    Key Laboratory of Wide Band Gap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

    Key Laboratory of Wide Band Gap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

    Key Laboratory of Wide Band Gap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

    Key Laboratory of Wide Band Gap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

    Key Laboratory of Wide Band Gap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

    Nanjing Electronic Devices Institute China Electronics Technology Group Corporation Nanjing 210016 People's Republic of China;

    Key Laboratory of Wide Band Gap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

    Key Laboratory of Wide Band Gap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

    Key Laboratory of Wide Band Gap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号