...
首页> 外文期刊>Journal of Applied Physics >Resistor-capacitor modeling of the cell membrane: A multiphysics analysis
【24h】

Resistor-capacitor modeling of the cell membrane: A multiphysics analysis

机译:电阻器 - 电容器建模的细胞膜:多体分析

获取原文
获取原文并翻译 | 示例

摘要

In this Tutorial, we provide a discussion of "What are cell membrane resistance (MR) and capacitance (MC)?" and then give a number of examples to illustrate how cell membranes constitute nature's ultimate stretchable resistor-capacitor network. There are many approaches to the analysis of the electric field effects in cell membranes, but a particularly intuitive and conceptually straightforward method is to use the biophysically inspired lumped parameter resistor (R)-capacitor (C) network in order to simulate the charging and discharging processes. By developing advanced multiphysics and multiscale numerical analysis, we expect to learn many cross-properties of biological materials which involve multiple spatial or temporal scales. These include electrodeformation (ED) and electroporation (EP) biophysical processes occurring in the cell membrane. In a first stage, we present electric and mechanical circuit analog models of cell membranes and examine their predictions and limitations. An important parameter that researchers can tune with these deterministic approaches is the strength of the trans-membrane voltage V_m: at low values of V_m, MC varies quadratically as a function of V_m and MR is infinite, but as V_m is increased at a value below the EP threshold, the membrane should be considered as a nonlinear capacitor. Over the EP threshold, there is a decrease in V_m and MR due to the charge transport across the membrane. Mechanical and electrical stresses, singly or in combination, can result in damage and eventually breakdown of the membrane. In a second stage, the parameters in the finite element (FE) modeling that we present are linked to scales we know should be associated with EP and ED processes. We present simulation data and attempt to determine whether the MC and MR behaviors compare well with experimental observations and/or trends from analytical approaches. MC and MR are correlated with the dielectric, mechanical, and morphological information of cells. For an initially spherical cell exposed to an electric field, monitoring MC and MR reflects a quadratic and then higher order nonlinear behavior as a function of V_m. The quadratic regime scales with spheroidal morphologies of the stressed cell up to a critical value of V_m beyond which higher order nonlinearities arise, and the cell shape is no longer described by a spheroid. Furthermore, we consider the present challenges of connecting electrostatic stress, strain energy in multi-cellular environments to sub-cellular scale material properties, and show that they have the potential to explain the ED and EP of cell membranes via multi-physics and multi-scale numerical analysis. The emergence of V_m as a reporter of neighboring cell interactions is also discussed in a theory-based method for constructing realistic models of tissues based on densely packed environments made by irregularly shaped cells. Of particular interest is the proximity-induced ED and capacitive coupling between neighboring cells, and the subsequent correlation that this has upon anisotropic local ED distribution over a wide range of conditions. For future studies, we identify significant challenges, opportunities, and a sampling of a few used case studies for the development of tissue ED and EP modeling in the coming years.
机译:在本教程中,我们提供了“什么是细胞膜电阻(MR)和电容(MC)?”的讨论。然后给出一些示例以说明蜂窝膜是如何构成自然的最终可拉伸电阻电容器网络的方法。在细胞膜中的电场效应分析有许多方法,但是一种特别直观和概念性地简单的方法是使用生物物理启发的总体参数电阻(R)-Capacitor(C)网络来​​模拟充电和放电流程。通过开发先进的多发性和多尺度数值分析,我们希望了解涉及多个空间或时间尺度的生物材料的许多跨性质。这些包括在细胞膜中发生的电光变化(ED)和电穿孔(EP)生物物理方法。在第一阶段,我们呈现电动和机械电路模拟模型的细胞膜并检查其预测和限制。研究人员可以使用这些确定性方法调谐的重要参数是跨膜电压V_M的强度:在V_M的低值下,MC随着V_M的函数而直角变化,MR为无限,但随着V_M在下面的值增加时EP阈值,膜应被认为是非线性电容器。在EP阈值上,由于膜上的电荷传输,V_M和MR的减少。机械和电气应力,单独或组合,可能导致膜的损坏并最终崩溃。在第二阶段,我们存在的有限元(FE)建模的参数与我们所知道的尺度相关联,我们应该与EP和ED进程相关联。我们提出了模拟数据并试图确定MC和MR行为是否与来自分析方法的实验观察和/或趋势相比。 MC和MR与细胞的电介质,机械和形态学信息相关联。对于暴露于电场的初始球形电池,监测MC和MR作为V_M的函数反映了二次的,然后更高阶的非线性行为。二次调节条件具有强应力细胞的球形形态,其达到V_m的临界值,超出了更高阶非线性的临界值,并且细胞形状不再由球状体描述。此外,我们考虑将静电应力,多细胞环境中的静电应力,应变能量与子蜂窝尺度材料特性的挑战进行了现有的挑战,并表明它们具有通过多物理和多重解释细胞膜的ED和ED规模数值分析。还以基于理论的方法讨论了v_m作为邻居相互作用的记者的出现,用于基于由不规则形状的细胞制成的密集包装环境构建组织的现实模型的方法。特别令人兴趣的是邻近邻近电池之间的接近诱导的ED和电容耦合,以及随后的相关性,即这在各种条件下通过各向异性本地ED分布。对于未来的研究,我们确定未来几年在未来几年内造成的少数用案例研究的重要挑战,机会和抽样。

著录项

  • 来源
    《Journal of Applied Physics 》 |2021年第1期| 011101.1-011101.22| 共22页
  • 作者

    C. Brosseau; E. Sabri;

  • 作者单位

    Univ Brest CNRS Lab-STICC CS 93837 6 avenue Le Gorgeu 29238 Brest Cedex 3 France;

    Univ Brest CNRS Lab-STICC CS 93837 6 avenue Le Gorgeu 29238 Brest Cedex 3 France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号