首页> 外文期刊>Journal of Applied Physics >HfO_2/TiO_x bilayer structure memristor with linear conductance tuning for high density memory and neuromorphic computing
【24h】

HfO_2/TiO_x bilayer structure memristor with linear conductance tuning for high density memory and neuromorphic computing

机译:HFO_2 / TIO_X双层结构函忆阻,具有线性电导调谐,用于高密度记忆和神经形式计算

获取原文
获取原文并翻译 | 示例
           

摘要

Memristors with tunable conductance characteristics have attracted great attention in high density memory and neuromorphic computing. However, the dynamics of conductance change for filamentary-type memristors is generally asymmetric: The set transition is quite abrupt, while the reset transition is usually gradual, which is a big challenge to achieve continuous conductance tuning characteristics in both set and reset processes. In this work, we demonstrated an HfO_2/TiO_x (10nm/10nm) bilayer structure memristor with the feature of bidirectional conductance tuning (a gradual increase or decrease in conductance) in a simple pulse-train operation mode. A series of voltage pulses with specific amplitude and a fixed width of 50 ns were used to realize the characteristics of bidirectional conductance tuning. By further optimizing the pulse amplitude conditions, such as -1.1 V/50ns for the set process and 1.3-1.4 V/50ns for the reset process, the conductance of the memristor can be tuned almost linearly with the input pulse voltage. Such linear conductance update is highly desired for improving the fault tolerance ability in massive data storage or neuromorphic computing.
机译:具有可调谐电导特性的椎间盘在高密度记忆和神经形态计算中引起了极大的关注。然而,丝状型回忆晶体管的电导变化的动态通常是不对称的:设定的转换非常突然,而重置转换通常是渐进的,这是在模组和复位过程中实现连续电导调谐特性的重要挑战。在这项工作中,我们在简单的脉冲列车操作模式下展示了具有双向电导调谐(电导率逐渐增加或降低)的特征的HFO_2 / TiO_x(10nm / 10nm)双层结构函。使用具有特定幅度和50ns的固定宽度的一系列电压脉冲来实现双向导电调谐的特性。通过进一步优化脉冲幅度条件,例如用于设定过程的-1.1V / 50ns和用于复位过程的1.3-1.4 V / 50ns,可以通过输入脉冲电压几乎线性地调谐忆阻器的电导。这种线性电导更新非常需要用于提高大规模数据存储或神经形态计算中的容错能力。

著录项

  • 来源
    《Journal of Applied Physics》 |2020年第18期|184902.1-184902.9|共9页
  • 作者单位

    School of Electronic Science and Engineering and National Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 People's Republic of China Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 People's Republic of China School of Mechanical and Electronic Engineering East China University of Technology Nanchang 330013 People's Republic of China;

    School of Electronic Science and Engineering and National Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 People's Republic of China Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 People's Republic of China;

    School of Electronic Science and Engineering and National Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 People's Republic of China Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 People's Republic of China;

    School of Electronic Science and Engineering and National Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 People's Republic of China Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 People's Republic of China;

    School of Electronic Science and Engineering and National Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 People's Republic of China Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 People's Republic of China;

    School of Mechanical and Electronic Engineering East China University of Technology Nanchang 330013 People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号