首页> 外文期刊>Journal of Applied Physics >Investigation of heat transfer across a nanoscale air gap between a flying head and a rotating disk
【24h】

Investigation of heat transfer across a nanoscale air gap between a flying head and a rotating disk

机译:在飞行头和旋转盘之间的纳米级气隙中传热的传热研究

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding nanoscale heat transfer at the head-disk interface (HDI) is necessary for thermal management of hard disk drives (HDDs), especially for heat-assisted magnetic recording and microwave-assisted magnetic recording. To accurately model the head temperature profile in HDDs, it is imperative to employ a spacing-dependent heat transfer coefficient due to the combined effects of pressurized air conduction and wave-based phonon conduction. Moreover, while flying at near-contact, the fly height and heat transfer are affected by adhesion/contact forces in the HDI. In this study, we develop a numerical model to predict the temperature profile and the fly height for a flying slider over a rotating disk. We compare our simulations with touchdown experiments performed with a flying Thermal Fly-Height Control (TFC) slider with a near-surface Embedded Contact Sensor (ECS), which helps us to detect the temperature change. We incorporate the effects of disk temperature rise, adhesion/contact forces, air and phonon conduction heat transfer, and friction heating in our model. As the head approaches the disk with increasing TFC power, enhanced nanoscale heat transfer leads to a drop in the ECS temperature change vs TFC power curve. We find that the exclusion of the disk temperature rise causes the simulation to overestimate the ECS cooling drop. The incorporation of adhesion force results in a steeper ECS cooling drop. The addition of phonon conduction in the model causes a larger ECS cooling drop. The simulation with friction heating predicts a larger ECS temperature slope beyond contact. The simulation with these features agrees with the experiment.
机译:理解头部盘界面(HDI)的纳米级传热是用于硬盘驱动器(HDD)的热管理所必需的,特别是对于热辅助磁记录和微波辅助磁记录。为了准确地模拟HDD中的头部温度曲线,由于加压空气传导和基于波的声子传导的综合影响,必须采用间隔依赖性传热系数。此外,在近接触时飞行,飞行高度和传热受HDI中的粘附/接触力的影响。在本研究中,我们开发了一个数字模型,以预测旋转盘上的飞行滑块的温度曲线和飞行高度。我们将我们的模拟与带有近表面嵌入式触点传感器(ECS)的飞行热飞行高度控制(TFC)滑块进行了触地朝实验,这有助于我们检测温度变化。我们采用了磁盘升温,粘附/接触力,空气和声子传导传热,以及我们模型中的摩擦加热的影响。随着TFC功率的增加接近盘,增强的纳米级传热导致ECS温度变化与TFC电力曲线的下降。我们发现,排除磁盘温度升高导致模拟以高估ECS冷却液滴。粘附力的掺入导致陡峭的ECS冷却下降。在模型中添加声子传导导致ECS冷却下降较大。摩擦加热的模拟预测较大的ECS温度斜率,而不是接触。这些功能的模拟与实验一致。

著录项

  • 来源
    《Journal of Applied Physics》 |2020年第8期|084301.1-084301.13|共13页
  • 作者单位

    Department of Mechanical Engineering University of California at Berkeley Berkeley California 94720 USA;

    Department of Mechanical Engineering University of California at Berkeley Berkeley California 94720 USA;

    Department of Mechanical Engineering University of California at Berkeley Berkeley California 94720 USA;

    Department of Mechanical Engineering University of California at Berkeley Berkeley California 94720 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号