首页> 外文期刊>Applied Physics Letters >Numerical and experimental investigation of heat transfer across a nanoscale gap between a magnetic recording head and various media
【24h】

Numerical and experimental investigation of heat transfer across a nanoscale gap between a magnetic recording head and various media

机译:磁记录头和各种介质之间纳米级间隙传热的数值和实验研究

获取原文
获取原文并翻译 | 示例
       

摘要

With the emergence of Heat-Assisted Magnetic Recording and Microwave-Assisted Magnetic Recording, understanding nanoscale heat transfer at the head-media interface is crucial for developing reliable hard disk drives. There is a need to develop a methodology that uses a spacing-dependent nanoscale heat transfer coefficient, determined by using wave-based radiation and van der Waals force driven phonon conduction theories to predict head temperatures in hard disk drives. We present a numerical model to simulate the head temperature due to heat transfer across a closing nanoscale gap between the head and the media (nonrotating) and compare our results with static touchdown experiments performed with a head resting on three different media (Si, magnetic disks with AlMg, and glass substrates). The Thermal FlyHeight Control (TFC) heater in the head is powered to create a local protrusion, leading to contact of a resistive Embedded Contact Sensor (ECS) that is used to measure the temperature change. As the ECS approaches the media, enhanced phonon conduction heat transfer causes a drop in the ECS temperature vs TFC power curve. Our model shows that the introduction of van der Waals forces between the head and the media during computation of the head's thermal protrusion causes a steeper drop in the simulated ECS temperature curve, ensuring a good quantitative match with experiments for all of the media materials tested and different initial ECS-media spacings. We isolate the effect of air conduction on ECS cooling by comparing our simulations with experiments performed in air vs vacuum. Published under license by AIP Publishing.
机译:随着热辅助磁记录和微波辅助磁记录的出现,了解头部介质界面处的纳米级传热对于开发可靠的硬盘驱动器是至关重要的。需要开发一种方法,该方法使用间隔依赖性纳米级传热系数,通过使用基于波的辐射和范德瓦尔斯力被驱动的声子传导理论来预测硬盘驱动器中的头温度。我们提出了一种数值模型,用于模拟头部温度,因为在头部和介质之间的截止纳米级间隙(非调节)上的热传递,并将我们的结果与静态触摸实验进行比较,在三种不同介质上休息(Si,磁盘)用ALMG和玻璃基板)。头部中的热飞控(TFC)加热器供电以产生局部突起,导致电阻嵌入式接触传感器(ECS)的接触,用于测量温度变化。当ECS接近介质时,增强的声子传热导致ECS温度VS TFC电力曲线下降。我们的模型表明,在磁头的热突出期间引入van der WaaS部队的头部和介质之间的力量导致模拟ECS温度曲线中的陡峭下降,确保与所有测试的所有媒体材料的实验良好的定量匹配不同的初始ECS媒体间距。通过将我们的模拟与在空气中的实验中的实验比较,我们隔离对ECS冷却的空气传导的影响。通过AIP发布在许可证下发布。

著录项

  • 来源
    《Applied Physics Letters》 |2019年第22期|223102.1-223102.5|共5页
  • 作者单位

    Univ Calif Berkeley Berkeley CA 94720 USA;

    Univ Calif Berkeley Berkeley CA 94720 USA;

    Univ Calif Berkeley Berkeley CA 94720 USA;

    Texas A&M Univ College Stn TX 77843 USA;

    Univ Calif Berkeley Berkeley CA 94720 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:17:50

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号