...
首页> 外文期刊>Journal of Applied Physics >Magnetocaloric properties of Ni_(2+x)Mn_(1-x)Ga with coupled magnetostructural phase transition
【24h】

Magnetocaloric properties of Ni_(2+x)Mn_(1-x)Ga with coupled magnetostructural phase transition

机译:具有耦合磁带阶段过渡的Ni_(2 + x)Mn_(1-x)Ga的磁热理性质

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Systematic studies of magnetic entropy change △S_m and adiabatic temperature change △T_(ad) have been performed for ferromagnetic shape memory alloys Ni_(2+x)Mn_(1-x)Ga (0.18 ≤ x ≤ 0.27) undergoing coupled magnetostructural phase transition from ferromagnetic martensite ⇄ paramagnetic austenite. The magnetic entropy change calculated from isothermal magnetization measurements has the highest value (for the magnetic field change of △H = 5 T), △S_m = -29 J/kg K, in a Ni_(2.20)Mn_(0.80)Ga composition. The decrease in △S_m observed in the alloys with the larger Ni excess (0.22 ≤ x ≤ 0.27) is attributed to the progressive reduction in both the saturation magnetization and the total entropy change at the martensitic transition temperature. The adiabatic temperature change △T_(ad) measured upon heating in the Ni_(2+x)Mn_(1-x)Ga (0.18 ≤x≤ 0.27) alloys does not exceed 0.8 K (for the magnetic field change of △H =1.85 T). A higher value of △T_(ad) measured upon cooling has been explained as caused by the contribution of the structural subsystem to △T_(ad), i.e., to a partial magnetic field-induced structural transformation that has, for the given magnetic field change, an irreversible character in the alloys studied.
机译:磁熵变化的系统研究△S_M和绝热温度变化△T_(AD)已经对耦合磁性结构相变的铁磁性形状记忆合金Ni_(2 + x)Mn_(1-x)Ga(0.18≤x≤0.27)进行来自铁磁马氏体⇄顺磁奥氏体。由等温磁化测量计算的磁熵变化具有最高值(对于△H= 5tt的磁场变化),在Ni_(2.20)Mn_(0.80)GA组合中,△S_m= -29j / kg k。在具有较大Ni过量的合金中观察到的χs_m的减少(0.22≤x≤0.27)归因于饱和磁化强度的逐渐减少和马氏体转变温度的总熵变化。在Ni_(2 + x)mn_(1-x)ga(0.18≤x≤0.27)中加热时测量的绝热温度变化△t_(ad)不超过0.8k(对于△H=的磁场变化) 1.85 T)。已经通过结构子系统到△T_(AD)的贡献引起的,以对给定磁场的部分磁场诱导的结构变换来解释在冷却时测量的≥T_(AD)的△T_(AD)。改变,研究了合金中的不可逆转性格。

著录项

  • 来源
    《Journal of Applied Physics》 |2020年第17期|173903.1-173903.8|共8页
  • 作者单位

    National University of Science and Technology 'MISiS ' Moscow 119049 Russia Functional Materials Laboratory National Research South Ural State University Chelyabinsk 454080 Russia;

    Faculty of Physics Tver State University Tver 170100 Russia Faculty of Physics Chelyabinsk State University Chelyabinsk 454021 Russia;

    National University of Science and Technology 'MISiS ' Moscow 119049 Russia Functional Materials Laboratory National Research South Ural State University Chelyabinsk 454080 Russia Faculty of Physics Chelyabinsk State University Chelyabinsk 454021 Russia;

    National University of Science and Technology 'MISiS ' Moscow 119049 Russia;

    Kotelnikov Institute of Radioengineering and Electronics of RAS Moscow 125009 Russia;

    Kotelnikov Institute of Radioengineering and Electronics of RAS Moscow 125009 Russia;

    Kotelnikov Institute of Radioengineering and Electronics of RAS Moscow 125009 Russia Institute of Low Temperature and Structure Research of PAS Wroclaw 50-422 Poland;

    Kotelnikov Institute of Radioengineering and Electronics of RAS Moscow 125009 Russia;

    Faculty of Physics Chelyabinsk State University Chelyabinsk 454021 Russia;

    Faculty of Physics Chelyabinsk State University Chelyabinsk 454021 Russia;

    Department of Nanotechnology Materials Science and Mechanics Togliatti State University Tolyatti 445020 Russia;

    Snezhinsk Physics and Technology Institute National Research Nuclear University 'MEPhI' (Moscow Engineering Physics Institute) Snezhinsk 456776 Russia;

    Department of Physics Indian Institute of Technology New Delhi 110016 India;

    Faculty of Physics M.V. Lomonosov Moscow State University Moscow 119991 Russia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号