首页> 外文期刊>Journal of Applied Physics >Gas propellant dependency of plasma structure and thrust performance of microwave rocket
【24h】

Gas propellant dependency of plasma structure and thrust performance of microwave rocket

机译:气体推进剂等离子体结构的依赖性和微波火箭的推力性能

获取原文
获取原文并翻译 | 示例
           

摘要

To identify the characteristics of a suitable gas propellant for a microwave rocket, the discharge physics induced by an intense microwave in nitrogen, hydrogen, and helium was numerically reproduced by coupling a plasma fluid model with an electromagnetic wave propagation model. A discrete plasma structure was induced in nitrogen and hydrogen, because the ionization region was smaller than the incident-beam quarter wavelength. However, a diffusive plasma pattern was generated in helium, because the electron temperature increased and the electron-impact ionization was maintained even in the low-electric-field region. The shock wave propagation inside the rocket nozzle was numerically reproduced to evaluate the thrust performance dependence on the propellant species; this was achieved by solving the two-dimensional axisymmetric Euler equation with an energy source term for the microwave heating. The simple shock-tube theory indicated that the momentum coupling coefficient is proportional to the energy stored inside the rocket nozzle and inversely proportional to the propellant sound speed. The smallest momentum coupling coefficient was obtained for the helium case, although the sound speed in helium is faster than that in hydrogen. This was because insufficient energy was stored inside the rocket nozzle when helium was used, owing to the faster plasma propagation and lower energy absorption rate. The findings of this work indicate that to obtain a large thrust for a microwave rocket, selection of a gas propellant with a high energy absorption rate, small electron diffusion coefficient, low sound speed, and low specific heat ratio are preferable. Published under license by AIP Publishing.
机译:为了识别用于微波火箭的合适气体推进剂的特性,通过用电磁波传播模型耦合等离子体流体模型来用氮气,氢气和氦中强烈微波诱导的放电物理。在氮气和氢中诱导离散的血浆结构,因为电离区域小于入射光束四分之一波长。然而,在氦气中产生漫射等离子体图案,因为即使在低电场区域中也会保持电子温度和电子冲击电离。在数值上再现火箭喷嘴内的冲击波传播,以评估推进剂物种的推力性能依赖性;这是通过求解具有微波加热的能量源术语的二维轴对称欧拉方程来实现的。简单的冲击管理论表明,动量耦合系数与存储在火箭喷嘴内的能量成比例,并与推进剂声速成反比。为氦壳获得最小的动量耦合系数,尽管氦气中的声速比氢气中的声速快。这是因为当使用氦气时,由于等离子体繁殖和较低的能量吸收速率,所以当使用氦气时,能量不足。该工作的发现表明,为了获得微波火箭的大推力,优选具有高能量吸收率,小的电子扩散系数,低声速度和低比热比的气体推进剂。通过AIP发布在许可证下发布。

著录项

  • 来源
    《Journal of Applied Physics》 |2019年第16期|163303.1-163303.15|共15页
  • 作者单位

    Tohoku Univ Dept Aerosp Engn Sendai Miyagi 9808579 Japan;

    Tohoku Univ Dept Aerosp Engn Sendai Miyagi 9808579 Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号