...
首页> 外文期刊>Journal of Applied Physics >Stability of SiC and SiN interfaces in titanium carbide and nitride based heterostructures
【24h】

Stability of SiC and SiN interfaces in titanium carbide and nitride based heterostructures

机译:碳化钛和氮化物基异质结构中SiC和SiN界面的稳定性

获取原文
获取原文并翻译 | 示例

摘要

First-principles molecular dynamics simulations of the stability of the NaCl-type (B1) SiC and SiN interfaces in TiX/one multilayer SiY (X,Y=C,N) heterostructures were carried out as functions of temperature. It was previously shown that the SiX interfaces in the heterostructures based on transition metal compounds could be dynamically unstable owing to the elongated interfacial Si-X bonds compared to the Si-X bonds in the B1-SiX phases in equilibrium. However, this criterion is not satisfied for some SiX(111) interfaces. The aim of this work is to study the temperature-induced changes in the structure of the heterostructures under consideration and to clarify a possible origin of instability of the interfaces in them. It is shown that, at finite temperatures, the interfacial layer in the TiN(001)/SiC heterostructure transforms into the zinc blende-type (B3) SiC-like layer, whereas the interfaces in other (001) heterostructures transform into amorphous-like interfacial layers. The TiC(111)/SiC and TiN(111)/SiN heterostructures are stable up to 1400 K. The TiN(111)/B3-like SiC and TiC(111)/B3-like SiN systems form during static relaxation of the initial heterostructures. The phase transformations of the interfaces are explained in terms of dynamical and elastic stability criteria. In contrast to the (111) interfacial layers, all the B1-(001) interfaces are found to be dynamically unstable. The formation of the B3-(111) interfaces occurs due to the elastic instability of the corresponding B1-(111) interface. Published under license by AIP Publishing.
机译:进行了第一原理的分子动力学模拟,模拟了TiX /一个多层SiY(X,Y = C,N)异质结构中的NaCl型(B1)SiC和SiN界面随温度的变化。先前已表明,与平衡状态下B1-SiX相中的Si-X键相比,由于延长的界面Si-X键,基于过渡金属化合物的异质结构中的SiX界面可能动态不稳定。但是,某些SiX(111)接口不满足此标准。这项工作的目的是研究所考虑的异质结构中温度引起的变化,并弄清其中界面不稳定性的可能原因。结果表明,在一定温度下,TiN(001)/ SiC异质结构的界面层转变为锌共混型(B3)SiC状层,而其他(001)异质结构的界面转变为非晶状。界面层。 TiC(111)/ SiC和TiN(111)/ SiN异质结构在1400 K以下都稳定.TiN(111)/ B3类SiC和TiC(111)/ B3类SiN系统在初始静态松弛期间形成异质结构。界面的相变根据动力学和弹性稳定性标准进行解释。与(111)界面层相反,发现所有B1-(001)界面都是动态不稳定的。 B3-(111)界面的形成是由于相应的B1-(111)界面的弹性不稳定性所致。由AIP Publishing授权发布。

著录项

  • 来源
    《Journal of Applied Physics 》 |2019年第7期| 075303.1-075303.7| 共7页
  • 作者单位

    NAS Ukraine, Inst Problems Mat Sci, Krzhyzhanovsky Str 3, UA-03142 Kiev, Ukraine;

    Lawrence Livermore Natl Lab, L-372,POB 808, Livermore, CA 94551 USA;

    Jackson State Univ, Interdisciplinary Ctr Nanotox, Dept Chem & Biochem, Jackson, MS 39217 USA|Badger Tech Serv LLC, Vicksburg, MS 39180 USA;

    Jackson State Univ, Interdisciplinary Ctr Nanotox, Dept Chem & Biochem, Jackson, MS 39217 USA;

    NAS Ukraine, Inst Problems Mat Sci, Krzhyzhanovsky Str 3, UA-03142 Kiev, Ukraine;

    NAS Ukraine, Inst Problems Mat Sci, Krzhyzhanovsky Str 3, UA-03142 Kiev, Ukraine;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号