...
首页> 外文期刊>Journal of Applied Physics >Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles
【24h】

Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles

机译:从第一原理预测固体氧化物燃料电池电解质的离子电导率

获取原文
获取原文并翻译 | 示例

摘要

First-principles quantum simulations complemented with kinetic Monte Carlo calculations were performed to gain insight into the oxygen vacancy diffusion mechanism and to explain the effect of dopant composition on ionic conductivity in yttria-stabilized zirconia (YSZ). Density-functional theory (DFT) within the local-density approximation with gradient correction was used to calculate a set of energy barriers that oxygen ions encounter during migration in YSZ by a vacancy mechanism. Kinetic Monte Carlo simulations were then performed using Boltzmann probabilities based on the calculated DFT barriers to determine the dopant concentration dependence of the oxygen self-diffusion coefficient in (Y_2O_3)_x(ZrO_2)_((1-2x)) with x increasing from 6% to 15%. The results from the simulations suggest that the maximum conductivity occurs at 7-9 mol % Y_2O_3 at 600-1500 K and that the effective activation energy increases at higher Y doping concentrations in good agreement with previously reported literature data. The increase in the effective activation energy for migration arises from the higher-energy barrier for oxygen vacancy diffusion across an Y-Y common edge relative to diffusion across one with a Zr-Y common edge of two adjacent tetrahedra. The binding energies between oxygen vacancies and dopants were extracted up to the fourth nearest-neighbor interaction. Our results reveal that the binding energy is the strongest when the vacancy is in the second nearest-neighbor position relative to the Y dopant atom. The methodology was also applied to scandium-doped zirconia (SDZ). Preliminary results from quantum simulations of SDZ suggest that the effective activation energy for vacancy diffusion in SDZ is lower than that of YSZ, in agreement with experimental observations. The agreement with experimental studies on the two systems analyzed in this paper supports the use of this technique as a predictive tool on electrolyte systems not yet characterized experimentally.
机译:进行了第一性原理量子模拟和动力学蒙特卡洛计算,以深入了解氧空位扩散机理,并解释了掺杂剂组成对氧化钇稳定的氧化锆(YSZ)中离子电导率的影响。使用带有梯度校正的局部密度近似中的密度泛函理论(DFT),通过空位机制计算了氧离子在YSZ迁移过程中遇到的一组能量垒。然后,基于计算的DFT势垒,使用Boltzmann概率进行动力学蒙特卡洛模拟,以确定x从6增加的(Y_2O_3)_x(ZrO_2)_((1-2x))中氧自扩散系数的掺杂浓度依赖性。 %至15%。仿真结果表明,最大电导率出现在600-1500 K的7-9 mol%Y_2O_3处,并且在较高的Y掺杂浓度下有效激活能增加,这与先前报道的文献数据相吻合。用于迁移的有效活化能的增加源自相对于两个相邻四面体的具有Zr-Y公共边缘的氧空位扩散相对于整个Y-Y公共边缘的氧空位扩散的高能垒。氧空位和掺杂剂之间的结合能被提取到第四个最近邻相互作用。我们的结果表明,当空位处于相对于Y掺杂原子第二近邻的位置时,结合能最强。该方法还适用于scan掺杂氧化锆(SDZ)。 SDZ量子模拟的初步结果表明,SDZ中空位扩散的有效活化能比YSZ低,与实验观察一致。与本文分析的两种系统的实验研究相一致,支持将该技术用作尚未通过实验表征的电解质系统的预测工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号