...
首页> 外文期刊>Journal of Applied Physics >Ignition dynamics and activation energies of metallic thermites: From nano- to micron-scale participate composites
【24h】

Ignition dynamics and activation energies of metallic thermites: From nano- to micron-scale participate composites

机译:金属铝酸盐的点火动力学和活化能:从纳米级到微米级的复合材料

获取原文
获取原文并翻译 | 示例

摘要

Ignition behaviors associated with nano- and micron-scale particulate composite thermites were studied experimentally and modeled theoretically. The experimental analysis utilized a CO_2 laser ignition apparatus to ignite the front surface of compacted nickel (Ni) and aluminum (Al) pellets at varying heating rates. Ignition delay time and ignition temperature as a function of both Ni and Al particle size were measured using high-speed imaging and microthermocouples. The apparent activation energy was determined from this data using a Kissinger isoconversion method. This study shows that the activation energy is significantly lower for nano- compared with micron-scale particulate media (i.e., as low as 17.4 compared with 162.5 kJ/mol, respectively). Two separate Arrhenius-type mathematical models were developed that describe ignition in the nano- and the micron-composite thermites. The micron-composite model is based on a heat balance while the nanocomposite model incorporates the energy of phase transformation in the alumina shell theorized to be an initiating step in the solid-solid diffusion reaction and uniquely appreciable in nanoparticle media. These models were found to describe the ignition of the Ni/Al alloy for a wide range of heating rates.
机译:实验研究了与纳米级和微米级颗粒状复合铝热剂有关的点火行为,并进行了理论建模。实验分析利用CO_2激光点火装置以变化的加热速率点燃压实的镍(Ni)和铝(Al)球团的前表面。使用高速成像和微热电偶测量了点火延迟时间和点火温度与Ni和Al粒径的关系。使用基辛格同转换方法从该数据确定表观活化能。这项研究表明,与微米级颗粒介质相比,纳米级的活化能要低得多(即分别比162.5 kJ / mol低至17.4%)。建立了两个单独的Arrhenius型数学模型,它们描述了纳米复合材料和微米复合材料的铝热剂中的点火。微米复合材料模型基于热平衡,而纳米复合材料模型将相变能量整合到氧化铝壳中,理论上将其作为固-固扩散反应中的起始步骤,并且在纳米颗粒介质中具有独特意义。发现这些模型描述了各种加热速率下Ni / Al合金的点火。

著录项

  • 来源
    《Journal of Applied Physics 》 |2005年第3期| p.034909.1-034909.8| 共8页
  • 作者单位

    Department of Mechanical Engineering, West Texas. A & M University, Canyon, Texas 79015;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用物理学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号