...
首页> 外文期刊>Journal of Applied Physics >Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates
【24h】

Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates

机译:绝缘基板上的金属单壁碳纳米管中的电和热传输

获取原文
获取原文并翻译 | 示例

摘要

We analyze transport in metallic single-wall carbon nanotubes (SWCNTs) on insulating substrates over the bias range up to electrical breakdown in air. To account for Joule self-heating, a temperature-dependent Landauer model for electrical transport is coupled with the heat conduction equation along the nanotube. The electrical breakdown voltage of SWCNTs in air is found to scale linearly with their length, approximately as 5 V/μm; we use this to deduce a thermal conductance between SWCNT and substrate g ≈ 0.17 ±0.03 W K~(-1) m~(-1) per tube length, which appears limited by the SWCNT-substrate interface rather than the thermal properties of the substrate itself. We examine the phonon scattering mechanisms that limit electron transport, and find the strong temperature dependence of the optical phonon absorption rate to have a remarkable influence on the electrical resistance of micron-length nanotubes. Further analysis reveals that unlike in typical metals, electrons are responsible for less than 15% of the total thermal conductivity of metallic nanotubes around room temperature, and this contribution decreases at high bias or higher temperatures. For interconnect applications of metallic SWCNTs, significant self-heating may be avoided if power densities are limited below 5 μW/ μm, or if the SWCNT-surrounding thermal interface is optimized.
机译:我们分析了绝缘基板上金属单壁碳纳米管(SWCNTs)在整个偏压范围内的传输,直至空气中的电击穿。为了考虑焦耳自热,将电传输的温度相关的Landauer模型与沿着纳米管的热传导方程式耦合。发现SWCNT在空气中的电击穿电压随其长度呈线性比例变化,大约为5 V /μm。我们用它来推导SWCNT和基板之间的热导g≈每管长度g≈0.17±0.03 WK〜(-1)m〜(-1),这似乎受SWCNT-基板界面的限制而不是基板的热性能的限制本身。我们研究了限制电子传输的声子散射机制,发现光学声子吸收速率的强烈温度依赖性对微米长度的纳米管的电阻有显着影响。进一步的分析表明,与典型的金属不同,在室温附近,电子只占金属纳米管总热导率的不到15%,这种贡献在高偏压或更高温度下会降低。对于金属SWCNT的互连应用,如果将功率密度限制在5μW/μm以下,或者优化了SWCNT周围的热界面,则可以避免明显的自发热。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号