...
首页> 外文期刊>Journal of Applied Physics >The Dynamics Of Microscopic Bubbles In Viscous Insulating Liquids
【24h】

The Dynamics Of Microscopic Bubbles In Viscous Insulating Liquids

机译:粘性绝缘液体中微小气泡的动力学

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The dynamics of microscopic bubbles in low viscosity insulating liquids has been widely investigated. It has been shown that the bubble motion (growth, collapse, and rebounds) in such liquids is governed by inertial forces. In this paper, the results of an experimental study of the dynamics of microscopic bubbles in viscous liquids (μ ≥ 3 mPl) are presented. It is shown that, according to the conditions (injected energy, liquid viscosity, and applied pressure), the bubble motion is greatly modified. For example, no bubble rebound is observed in the higher viscosity liquids (e.g., Napvis XD110, μ= 83.5 mPl) and, for a given injected energy, the ratio of the expansion time of the bubble to its implosion time drops with increasing in liquid viscosity. The bubble dynamics are then governed by liquid viscosity. Moreover, the transition of the bubble dynamics from the inertial regime to the viscous one has been experimentally observed (as far as the present authors are aware) for the first time. This transition can be explained by a refined analysis of the Rayleigh-Plesset model of bubble dynamics. The bubble dynamics regime can be deduced from a Reynolds number (Re~(T_p)) versus elasticity number (∑) diagram, where four zones can be distinguished. Each zone corresponds to a particular regime: inertial regime with only one growth and collapse stage, inertial regime with at least one bubble rebound, viscous regime, and finally, a regime where a jet of hot liquid is produced. All experimental results are well distributed into the good part of this diagram.
机译:低粘度绝缘液体中微观气泡的动力学已得到广泛研究。已经表明,这种液体中的气泡运动(增长,破裂和反弹)是由惯性力控制的。本文介绍了粘性液体(μ≥3 mPl)中微观气泡动力学的实验研究结果。结果表明,根据条件(注入的能量,液体粘度和施加的压力),气泡运动得到了很大的改变。例如,在较高粘度的液体(例如Napvis XD110,μ= 83.5 mPl)中未观察到气泡回弹,并且对于给定的注入能量,气泡的膨胀时间与其内爆时间的比值随着液体的增加而降低粘度。气泡动力学然后由液体粘度控制。此外,气泡动力学从惯性态到粘性态的转变是首次实验性地观察到(据本作者所知)。可以通过对气泡动力学的Rayleigh-Plesset模型的精细分析来解释这种转变。可以从雷诺数(Re〜(T_p))与弹性数(∑)图推导出气泡动力学状态,其中可以区分四个区域。每个区域对应一个特定的状态:只有一个生长和收缩阶段的惯性状态,至少具有一个气泡回弹的惯性状态,粘性状态,最后是产生热液体射流的状态。所有实验结果都很好地分布在该图中的好部分。

著录项

  • 来源
    《Journal of Applied Physics》 |2009年第5期|76-84|共9页
  • 作者

    F. Jomni; A. Denat; F. Aitken;

  • 作者单位

    Grenoble Electrical Engineering Laboratory (G2Elab), Grenoble University and CNRS-25, rue des Martyrs 38042 Grenoble, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号