首页> 外文期刊>Journal of Applied Physics >Resonant pull-in of a double-sided driven nanotube-based electromechanical resonator
【24h】

Resonant pull-in of a double-sided driven nanotube-based electromechanical resonator

机译:双面驱动的基于纳米管的机电谐振器的谐振引入

获取原文
获取原文并翻译 | 示例
           

摘要

We theoretically investigate the electromechanical dynamics of a double-sided driven cantilevered nanotube-based electromechanical resonator. Closed-form analytical solutions capable of predicting the steady-state resonant oscillation of the device and its resonant pull-in conditions are derived using an energy-based method and are verified through a comparison with numerical simulations. Our closed-form formulas clearly reveal the complex relationship among the device geometry, driving voltages, and the device's electromechanical dynamics. Our results show that the stable steady-state spanning range of the resonating cantilever can reach up to 90% of the gap between the actuation electrodes, which substantially exceeds the previously reported quasistatic pull-in limit for cantilevered nanotube-based nanoelectromechanical systems and the resonant pull-in limit for double-sided driven microelectromechanical gyroscopes. Our results also reveal that the processes of tuning the resonant frequency of the resonator and controlling its stable steady-state oscillation amplitude can be decoupled and controlled separately by controlling the dc and ac components in the driving signal. The unique behavior of the large stable steady-state resonant oscillation range, which is independent of the electrostatic-force-induced resonant frequency tuning, makes this double-sided driven resonator attractive for many applications, such as tunable sensors for detecting ultratiny mass and force and tunable electronics. The results reported in this paper are useful to the optimal design of novel nanotube- or nanowire-based double-sided driven electromechanical resonators.
机译:我们从理论上研究了双面驱动悬臂式纳米管机电谐振器的机电动力学。使用基于能量的方法得出能够预测器件稳态谐振及其谐振引入条件的闭式解析解,并通过与数值模拟的比较进行了验证。我们的闭式公式清楚地揭示了器件几何形状,驱动电压和器件机电动力学之间的复杂关系。我们的结果表明,共振悬臂的稳态稳态跨度可以达到激励电极之间间隙的90%,这大大超过了先前报道的基于悬臂纳米管的纳米机电系统的准静态吸合极限。双面驱动微机电陀螺仪的拉入极限。我们的结果还表明,通过控制驱动信号中的直流分量和交流分量,可以分别去耦和控制调谐谐振器谐振频率和控制其稳定稳态振荡幅度的过程。独立于静电力引起的谐振频率调谐的大稳态稳态谐振范围的独特行为,使得这种双面驱动谐振器对许多应用具有吸引力,例如用于检测超微质量和力的可调传感器和可调电子。本文报道的结果可用于新型纳米管或纳米线为基础的双面驱动机电谐振器的优化设计。

著录项

  • 来源
    《Journal of Applied Physics》 |2009年第1期|0243011-0243018|共8页
  • 作者

    Changhong Ke;

  • 作者单位

    Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902-6000, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号