...
首页> 外文期刊>Journal of Applied Physics >Fabrication of advanced La-incorporated Hf-silicate gate dielectrics using physical-vapor-deposition-based in situ method and its effective work function modulation of metal/high-k stacks
【24h】

Fabrication of advanced La-incorporated Hf-silicate gate dielectrics using physical-vapor-deposition-based in situ method and its effective work function modulation of metal/high-k stacks

机译:基于物理气相沉积的原位法制备掺La的Hf-硅酸盐栅电介质及其对金属/高k层的有效功函数的调制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Lanthanum (La) incorporation into Hf-silicate high-permittivity (high-k) gate dielectrics was conducted using a physical-vapor-deposition (PVD)-based in situ method. PVD-grown metal Hf, La, and Hf-La alloys on base SiO_2 oxides received in situ annealing to form high-quality HfLaSiO dielectrics, and subsequent deposition of metal gate electrodes was carried out to fabricate advanced metal/high-k gate stacks without breaking vacuum. The in situ method was found to precisely control La content and its depth profile and to tune the effective work function of metal/high-k stacks. Remarkable leakage current reduction of almost seven orders of magnitude compared with conventional poly-Si/SiO_2 stacks and excellent interface properties comparable to an ideal SiO2/Si interface were also achieved at an equivalent oxide thickness of around 1.0 nm. Our x-ray photoelectron spectroscopy analysis revealed that, as previously suggested, effective work function modulation due to La incorporation is attributed to the interface dipole (or localized sheet charge) at the bottom high-k/SiO_2 interface, which is crucially dependent on the La content at the interface. Moreover, it was found that high-temperature annealing causing interface oxide growth leads to redistribution of La atoms and forms the uppermost La-silicate layer at the metal/high-k interface by releasing the dipole moment at the bottom high-k/SiO_2 interface. Based on these physical and electrical characterizations, the advantages and process guidelines for La-incorporated dielectrics were discussed in detail.
机译:使用基于物理气相沉积(PVD)的原位方法将镧(La)掺入Hf硅酸盐高介电常数(high-k)栅极电介质中。在基础SiO_2氧化物上进行PVD生长的金属Hf,La和Hf-La合金进行原位退火以形成高质量的HfLaSiO电介质,随后进行金属栅电极沉积以制造高级的金属/高k栅叠层打破真空。发现原位方法可精确控制La含量及其深度分布,并调节金属/高k层的有效功函数。在等效氧化物厚度约为1.0 nm的情况下,与传统的多晶硅/ SiO_2叠层相比,漏电流显着降低了近七个数量级,并且具有与理想的SiO2 / Si界面相当的出色的界面性能。我们的X射线光电子能谱分析表明,如先前所述,由于掺入La而导致的有效功函数调制归因于底部高k / SiO_2界面处的界面偶极子(或局部薄层电荷),而界面偶极子则主要取决于界面上的内容。此外,已发现引起界面氧化物生长的高温退火导致La原子的重新分布,并通过释放底部高k / SiO_2界面的偶极矩而在金属/高k界面形成最上层的La硅酸盐层。 。基于这些物理和电气特性,详细讨论了掺La的电介质的优点和工艺准则。

著录项

  • 来源
    《Journal of Applied Physics》 |2010年第3期|034104.1-034104.9|共9页
  • 作者单位

    Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;

    Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;

    Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;

    Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;

    Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan Research Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;

    Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;

    Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan Research Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号