首页> 外文期刊>Journal of Applied Physics >Analysis of transient electron energy in a micro dielectric barrier discharge for a high performance plasma display panel
【24h】

Analysis of transient electron energy in a micro dielectric barrier discharge for a high performance plasma display panel

机译:高性能等离子显示板微介电势垒放电中的瞬态电子能量分析

获取原文
获取原文并翻译 | 示例
           

摘要

We present here analysis of electron energy of a micro dielectric barrier discharge (micro-DBD) for alternating-current plasma display panel (ac-PDP) with Ne/Xe gas mixture by using the optical emission spectroscopy (OES). The OES method is quite useful to evaluate a variety of electron energy in a high pressure DBD ignited in a PDP small cell. Experiment shows that the ratio of Ne emission intensity (I_(Ne)) relative to Xe emission intensity (I_(Xe)) drastically decreases with time. This temporal profile is well consistent with dynamic behavior of electron temperature in a micro-DBD, calculated in one-dimensional fluid model. I_(Ne)/I_(Xe) also decreases with an increase in Xe gas pressure and a decrease in applied voltage especially in the initial stage of discharge, and these reflect the basic features of electron temperature in a micro-DBD. The influences of plasma parameters such as electron temperature on luminous efficacy are also theoretically analyzed using one-dimensional fluid model. The low electron temperature, which is attained at high Xe gas pressure, realizes the efficient Xe excitation for vacuum ultraviolet radiation. The high Xe-pressure condition also induces the rapid growth of discharge and consequent high plasma density, resulting in high electron heating efficiency.
机译:我们在这里通过使用光发射光谱法(OES)分析具有Ne / Xe气体混合物的交流电等离子体显示面板(ac-PDP)的微介电势垒放电(micro-DBD)的电子能量。 OES方法对于评估在PDP小型电池中点燃的高压DBD中的各种电子能量非常有用。实验表明,Ne发射强度(I_(Ne))与Xe发射强度(I_(Xe))之比随时间急剧减小。该时间轮廓与在一维流体模型中计算出的微型DBD中电子温度的动态行为完全一致。 I_(Ne)/ I_(Xe)也会随着Xe气压的增加和施加电压的降低而降低,尤其是在放电初期,这反映了微型DBD中电子温度的基本特征。还使用一维流体模型从理论上分析了等离子体参数(如电子温度)对发光效率的影响。在高Xe气压下达到的低电子温度实现了真空紫外线辐射的高效Xe激发。高氙气压力条件还引起放电的快速增长,并因此导致高等离子体密度,从而导致高电子加热效率。

著录项

  • 来源
    《Journal of Applied Physics》 |2010年第2期|023305.1-023305.6|共6页
  • 作者单位

    Graduate School of Advanced Science of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan;

    Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachiouji 192-0397, Japan;

    Graduate School of Advanced Science of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan;

    Graduate School of Advanced Science of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号