...
首页> 外文期刊>Journal of Applied Physics >Tuning the thermal relaxation of transition-metal ferrite nanoparticles through their intrinsic magnetocrystalline anisotropy
【24h】

Tuning the thermal relaxation of transition-metal ferrite nanoparticles through their intrinsic magnetocrystalline anisotropy

机译:通过内在的磁晶各向异性调节过渡金属铁氧体纳米粒子的热弛豫

获取原文
获取原文并翻译 | 示例

摘要

Monodispersed ferrite nanoparticles of Fe_3O_4, MnFe_2O_4, and CoFe_2O_4 (near to 10 nm), were synthesized by organometallic synthesis, showing the same homogeneous chemical, morphological, and crystalline characteristics. The study and correlation of the thermal relaxation processes were analyzed through static and dynamic measurements. Due to the intrinsic chemical characteristics and magnetocrystalline anisotropy of the ferrite nanoparticles, the energy barrier can be tuned to a range between 1100 K≤E_B≤7300 K, showing an alternative approach for tuning the magnetic dynamic properties, in contrast to the well-known mechanism through particle-size-effects. Specific loss power efficiencies were evaluated for the three ferrite samples. Comparing the three samples at the maximum ac frequency of v =10 kHz, MnFe_2O_4 exhibits the single-peak maximum of loss with the value of 273 erg/s • g at T= 65 K, whereas for the CoFe_2O_4, a maximum of 132 erg/s • g (T=217 K) was determined. A considerable drop in the efficiency was determined for the Fe_3O_4 nanoparticles, with the value of 20 erg/s·g at T = 43.5 K.
机译:通过有机金属合成法合成了Fe_3O_4,MnFe_2O_4和CoFe_2O_4(接近10 nm)的单分散铁氧体纳米颗粒,它们具有相同的均一化学,形态和晶体特性。通过静态和动态测量分析了热松弛过程的研究和相关性。由于铁氧体纳米粒子的内在化学特性和磁晶各向异性,能垒可以调整到1100K≤E_B≤7300K之间的范围,与众所周知的方法相比,它显示了一种替代方法来调节磁动力学特性。通过粒度效应的机理。评估了三种铁氧体样品的比损耗功率效率。在v = 10 kHz的最大交流频率下比较三个样品,MnFe_2O_4在T = 65 K时表现出单峰最大损耗,值为273 er​​g / s•g,而对于CoFe_2O_4,最大损耗为132 erg / s•确定g(T = 217 K)。对于Fe_3O_4纳米颗粒,效率明显下降,在T = 43.5 K时值为20 erg / s·g。

著录项

  • 来源
    《Journal of Applied Physics 》 |2011年第6期| p.064304.1-064304.6| 共6页
  • 作者单位

    Advanced Materials Research Institute, University of New Orleans, New Orleans, Louisiana 70148, USA;

    Advanced Materials Research Institute, University of New Orleans, New Orleans, Louisiana 70148, USA;

    Advanced Materials Research Institute, University of New Orleans, New Orleans, Louisiana 70148, USA;

    Advanced Materials Research Institute, University of New Orleans, New Orleans, Louisiana 70148, USA;

    Advanced Materials Research Institute, University of New Orleans, New Orleans, Louisiana 70148, USA;

    Advanced Materials Research Institute, University of New Orleans, New Orleans, Louisiana 70148, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号