首页> 外文期刊>Journal of Applied Physics >Modeling and theoretical efficiency of a silicon nanowire based thermoelectric junction with area enhancement
【24h】

Modeling and theoretical efficiency of a silicon nanowire based thermoelectric junction with area enhancement

机译:具有面积增强的基于硅纳米线的热电结的建模和理论效率

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Recent experimental work suggests that individual silicon nanowires with rough surfaces possess a thermoelectric figure of merit as high as 0.6 near room temperature. This paper addresses the possibility of using an array of such nanowires in a thermoelectric junction for generation. Employing a model of frequency dependent phonon boundary scattering, we estimate the effective thermal conductivity of the array and investigate heat flow through the junction. We show that charge transport is largely unaffected by the roughness scales considered. Enhancing the area for heat exchange at an individual 200 μm×200μm p-n junction yields significant temperature differences across the junction leading to power >0.6 mW and efficiency >1.5% for a junction with effective thermal conductivity <5 W/mK, when the source and sink are at 450 K and 300 K, respectively. We show that relatively short nanowires of ~50 /μm length are sufficient for obtaining peak power and reasonable efficiency. This substantially reduces the challenge of engineering low resistivity electrical contacts that critically affect power and efficiency. This paper provides insight into how fundamental transport in relation to bulk heat transfer and charge transport, affects the performance of thermoelectric junctions based on nanostructured materials.
机译:最近的实验工作表明,具有粗糙表面的单个硅纳米线在室温附近具有高达0.6的热电性能。本文探讨了在热电结中使用这种纳米线阵列进行发电的可能性。利用频率依赖的声子边界散射模型,我们估算了阵列的有效热导率,并研究了通过结的热流。我们表明电荷传输在很大程度上不受所考虑的粗糙度尺度的影响。当源和源之间的有效热导率小于5 W / mK时,增加单个200μm×200μmpn结处的热交换面积会在结处产生明显的温差,导致功率> 0.6 mW,效率> 1.5%。下沉分别为450 K和300K。我们证明〜50 /μm长的相对短的纳米线足以获得峰值功率和合理的效率。这极大地减少了工程设计低电阻率电触点的挑战,该触点严重影响功率和效率。本文深入探讨了与整体传热和电荷传输有关的基本传输如何影响基于纳米结构材料的热电结的性能。

著录项

  • 来源
    《Journal of Applied Physics》 |2012年第12期|p.124319.1-124319.10|共10页
  • 作者单位

    Department of Mechanical Science & Engineering, University of Illinois, Urbana, Illinois 61801, USA;

    Department of Mechanical Science & Engineering, University of Illinois, Urbana, Illinois 61801, USA;

    Department of Mechanical Science & Engineering, University of Illinois, Urbana, Illinois 61801, USA;

    Department of Mechanical Science & Engineering, University of Illinois, Urbana, Illinois 61801, USA;

    Department of Mechanical Science & Engineering, University of Illinois, Urbana, Illinois 61801, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号