首页> 外文期刊>Journal of Applied Physics >Temperature dependent dynamics transition of intermittent plastic flow in a metallic glass. Ⅱ. Dynamics analysis
【24h】

Temperature dependent dynamics transition of intermittent plastic flow in a metallic glass. Ⅱ. Dynamics analysis

机译:金属玻璃中间歇性塑料流动的温度依赖性动力学转变。 Ⅱ。动力学分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

By reducing the testing temperatures down to the temperature well below the glassy transition temperature, the serrated flow behaviour during plastic deformation of a Zr-based metallic glass was experimentally investigated and the results were presented in Part Ⅰ of the present paper. It shows that the yield strength, the plastic deformation ability, the density of shear bands of the metallic glass increase with decreasing temperature. In order to understand the mechanisms for the changes of the mechanical behaviour at low temperatures, in Part Ⅱ of this study, the stress-time sequence in the plastic strain regime is characterized by a comprehensive dynamical and statistical analysis. The stress-time sequence is found to exhibit a chaotic state at high temperatures (>203 K), whereas a self-organized critical state is obtained at low temperatures (≤203 K) due to the freezing effect. The reasons for the transition between these two distinct spatio-temporal dynamical states are elucidated by investigating the effect of temperature on the deformation units (shear transformation zones) and the elastic interactions between neighbouring shear bands. The results demonstrate that the low temperatures results in an enhancement of the interactions between the elastic strain fields initiated by neighbouring shear bands, which is primarily responsible for the enhanced plasticity of the metallic glass and a dynamics transition.
机译:通过将测试温度降低到远低于玻璃化转变温度的温度,对Zr基金属玻璃塑性变形过程中的锯齿状流动行为进行了实验研究,结果在本论文的第一部分中进行了介绍。结果表明,随着温度的降低,金属玻璃的屈服强度,塑性变形能力,剪切带密度增加。为了理解低温下力学行为变化的机理,在本研究的第二部分中,通过全面的动力学和统计分析来表征塑性应变状态下的应力时间序列。发现应力时间序列在高温(> 203 K)下表现出混沌状态,而在低温(≤203K)下由于冻结效应而获得自组织临界状态。通过研究温度对变形单元(剪切转变区)的影响以及相邻剪切带之间的弹性相互作用,可以阐明这两个不同的时空动力学状态之间转变的原因。结果表明,低温导致相邻剪切带引发的弹性应变场之间的相互作用增强,这主要是金属玻璃的可塑性增强和动力学转变的原因。

著录项

  • 来源
    《Journal of Applied Physics》 |2013年第3期|033521.1-033521.8|共8页
  • 作者单位

    Laboratory for Microstructures, Shanghai University, Shanghai 200444, China ,Department of Industrial and System Engineering, The Hong Kong Polytechnic University, Hong Kong, China;

    Laboratory for Microstructures, Shanghai University, Shanghai 200444, China;

    Department of Industrial and System Engineering, The Hong Kong Polytechnic University, Hong Kong, China;

    Department of Mathematics, Zhengzhou University, Zhengzhou 450001, China;

    School of Materials Sciences and Engineering, Harbin Institute of Technology, Harbin 150001, China;

    Laboratory for Microstructures, Shanghai University, Shanghai 200444, China;

    Institute of Mechanics, Chinese Academy of Sciences, Beijing 100083, China;

    Department of Mechanics, Shanghai University, Shanghai 200444, China;

    Laboratory for Microstructures, Shanghai University, Shanghai 200444, China;

    Laboratory for Microstructures, Shanghai University, Shanghai 200444, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号