首页> 外文期刊>Journal of Applied Physics >Kinetics of hydrogen adsorption and desorption on Si(100) surfaces
【24h】

Kinetics of hydrogen adsorption and desorption on Si(100) surfaces

机译:氢在Si(100)表面上吸附和解吸的动力学

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The kinetics of molecular hydrogen reactions at the Si (100) surface has been studied by simulation to extract the physics underlying two unexpected experimental observations: apparently first-order desorption kinetics and an increase in sticking probability with hydrogen coverage. At a partially H-terminated Si(100) surface, each Si dimer assumes an unoccupied dimer (UOD), singly occupied dimer (SOD), or doubly occupied dimer (DOD) structure. In our hydrogen reaction model based on an inter-dimer mechanism, a site consisting of an adjacent pair of a DOD and a UOD (DOD/UOD) is a key component for the desorption and adsorption kinetics of hydrogen at the Si(100) surface. To simulate reaction kinetics of both reactions, DU (D: DOD, U: UOD) and SS (S: SOD) pathways are proposed: DU pathway claims that the adsorption as well as desorption of hydrogen takes place at common sites having a cw-configured SOD/SOD pair that is transformed transiently from a DOD/ UOD pair by H(D) diffusion. Thus the adsorption obeys the so-called 4H mechanism, but the desorption obeys the 2H mechanism. SS pathway claims that the adsorption occurs at sites having a UOD/UOD pair, and the desorption occurs at sites having a ris-configured SOD/SOD pair that is generated by diffusion of isolated SODs. To simulate temperature-programmed-desorption spectra and sticking probability vs coverage curves, thermo-statistics for a lattice-gas system characterized with parameters for hydrogen pairing and dimer clustering is used to evaluate equilibrium populations of DOD/UOD pairs and isolated SODs. The model simulation based on the above reaction model successfully reproduces all of the complicated, coverage dependent adsorption and desorption reactions of hydrogen at Si(100) surfaces. Specifically, at high coverage above 0.1 ML majority of the adsorption and desorption proceed along the DU pathway. Hence, it is suggested that the adsorption and desorption in the high coverage regime are not microscopically reversible. On the other hand, at low coverages below 0.1 ML, the simulation shows up that the majority of adsorption proceeds along the SS pathway, and the desorption by the DU pathway. Since both reactions obey the 2H mechanism, it is suggested that the desorption and adsorption in the low coverage regime are microscopically reversible.
机译:通过模拟研究了在Si(100)表面上分子氢反应的动力学,以提取基于以下两个意想不到的实验观察结果的物理学:显然是一级解吸动力学和氢覆盖的粘附可能性增加。在部分终止于H的Si(100)表面上,每个Si二聚体均采用无占据的二聚体(UOD),单占据的二聚体(SOD)或双占据的二聚体(DOD)结构。在我们基于二聚体机理的氢反应模型中,由DOD和UOD的相邻对组成的位点(DOD / UOD)是氢在Si(100)表面解吸和吸附动力学的关键因素。为了模拟两个反应的反应动力学,提出了DU(D:DOD,U:UOD)和SS(S:SOD)途径:DU途径声称氢的吸附和解吸发生在具有cw-配置的SOD / SOD对,通过H(D)扩散从DOD / UOD对瞬时转变而来。因此,吸附服从所谓的4H机理,而解吸服从2H机理。 SS途径声称吸附发生在具有UOD / UOD对的位点上,而解吸发生在具有由分离的SOD扩散而产生的风险配置的SOD / SOD对的位点上。为了模拟程序升温脱附光谱和粘着概率与覆盖曲线之间的关系,使用具有氢对和二聚体聚类参数特征的晶格气系统的热统计量来评估DOD / UOD对和分离的SOD的平衡种群。基于上述反应模型的模型模拟成功地再现了Si(100)表面上所有复杂的,取决于覆盖率的氢吸附和解吸反应。具体而言,在高于0.1 ML的高覆盖率下,大部分吸附和解吸沿DU途径进行。因此,建议在高覆盖范围内的吸附和解吸在微观上是不可逆的。另一方面,在低于0.1 ML的低覆盖率下,模拟显示大多数吸附沿SS路径进行,而DU路径则发生解吸。由于两个反应均遵循2H机理,因此建议在低覆盖范围内的脱附和吸附在微观上是可逆的。

著录项

  • 来源
    《Journal of Applied Physics》 |2013年第23期|234309.1-234309.8|共8页
  • 作者单位

    Department of Electrical Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa-shi,Yamagata 992-8510, Japan;

    Department of Electrical and Electronics Engineering, Kyushu Institute of Technology 1-1 Sensui-cho,Tobata-ku, Kitakyushu-shi, Fukuoka 804-8550, Japan;

    Department of Electrical and Electronics Engineering, Kyushu Institute of Technology 1-1 Sensui-cho,Tobata-ku, Kitakyushu-shi, Fukuoka 804-8550, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号