首页> 外文期刊>Journal of Applied Physics >Synthesis and properties of ferromagnetic nanostructures embedded within a high-quality crystalline silicon matrix via ion implantation and nanocavity assisted gettering processes
【24h】

Synthesis and properties of ferromagnetic nanostructures embedded within a high-quality crystalline silicon matrix via ion implantation and nanocavity assisted gettering processes

机译:通过离子注入和纳米腔辅助吸气工艺嵌入高质量晶体硅基体中的铁磁纳米结构的合成与性能

获取原文
获取原文并翻译 | 示例
           

摘要

Integrating magnetic functionalities with silicon holds the promise of developing, in the most dominant semiconductor, a paradigm-shift information technology based on the manipulation and control of electron spin and charge. Here, we demonstrate an ion implantation approach enabling the synthesis of a ferromagnetic layer within a defect free Si environment by exploiting an additional implant of hydrogen in a region deep below the metal implanted layer. Upon post-implantation annealing, nanocavities created within the H-implanted region act as trapping sites for gettering the implanted metal species, resulting in the formation of metal nanoparticles in a Si region of excellent crystal quality. This is exemplified by the synthesis of magnetic nickel nanoparticles in Si implanted with H~+ (range: ~850 nm; dose: 1.5 × 10~(16)cm~(-2)) and Ni~+ (range: ~60nm; dose: 2 × 10~(15cm~(-2)). Following annealing, the H implanted regions populated with Ni nanoparticles of size (~ 10-25 nm) and density (~10~(11)/cm~2) typical of those achievable via conventional thin film deposition and growth techniques. In particular, a maximum amount of gettered Ni atoms occurs after annealing at 900 ℃, yielding strong ferromagnetism persisting even at room temperature, as well as fully recovered crystalline Si environments adjacent to these Ni nanoparticles. Furthermore, Ni nanoparticles capsulated within a high-quality crystalline Si layer exhibit a very high magnetic switching energy barrier of ~0.86eV, an increase by about one order of magnitude as compared to their counterparts on a Si surface or in a highly defective Si environment.
机译:将磁性功能与硅集成在一起,有望在最主要的半导体中开发基于电子自旋和电荷的操纵和控制的范式转换信息技术。在这里,我们演示了一种离子注入方法,该方法能够通过在金属注入层下方较深的区域中利用氢的额外注入来在无缺陷的Si环境中合成铁磁层。在植入后退火后,在H注入区域内形成的纳米腔体用作捕获部位,以吸杂注入的金属物质,从而在晶体质量极佳的Si区域中形成金属纳米粒子。这可以通过在硅中注入H〜+(范围:〜850 nm;剂量:1.5×10〜(16)cm〜(-2))和Ni〜+(范围:〜60nm;剂量:1.5 nm)来合成磁性镍纳米粒子来举例说明。剂量:2×10〜(15cm〜(-2))。退火后,H注入区域填充了大小为(〜10〜25 nm)和密度(〜10〜(11)/ cm〜2)的镍纳米粒子特别是在900℃退火后会出现最大数量的吸杂Ni原子,即使在室温下也能产生强铁磁性,并且在与这些Ni相邻的完全恢复的结晶Si环境中此外,封装在高质量结晶硅层中的镍纳米颗粒具有很高的磁开关能垒,约为〜0.86eV,与在硅表面或缺陷严重的情况下相比,增加了约一个数量级。硅环境。

著录项

  • 来源
    《Journal of Applied Physics》 |2014年第5期|054306.1-054306.8|共8页
  • 作者单位

    SUNY College of Nanoscale Science and Engineering, Albany, New York 12203, USA;

    SUNY College of Nanoscale Science and Engineering, Albany, New York 12203, USA;

    SUNY College of Nanoscale Science and Engineering, Albany, New York 12203, USA;

    SUNY College of Nanoscale Science and Engineering, Albany, New York 12203, USA;

    SUNY College of Nanoscale Science and Engineering, Albany, New York 12203, USA;

    SUNY College of Nanoscale Science and Engineering, Albany, New York 12203, USA;

    SUNY College of Nanoscale Science and Engineering, Albany, New York 12203, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号