首页> 外文期刊>Journal of Applied Physics >Improved thermoelectric performance of (Zr_(0.3)Hf_(0.7))NiSn half-Heusler compounds by Ta substitution
【24h】

Improved thermoelectric performance of (Zr_(0.3)Hf_(0.7))NiSn half-Heusler compounds by Ta substitution

机译:通过Ta取代改善(Zr_(0.3)Hf_(0.7))NiSn半霍斯勒化合物的热电性能

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The thermoelectric performance of Ta substituted (ZrHf)NiSn-based half-Heusler compounds is studied. Here, Ta is used on the Hf site for controlling the charge carrier concentration in contrast to the widely used Sb substitution on the Sn site. The influence of the Ta content on the thermoelectric and transport properties of (Zr_(0.3)Hf_(0.7-x)Ta_x)NiSn (x = 0, 0.01, 0.05) is investigated by means of Seebeck coefficient, electrical resistivity, thermal conductivity, and Hall coefficient measurements. The results are analyzed in context of the single parabolic band model. Ta substitution increases the charge carrier concentration and suppresses the influence of impurity band, which is present in the pristine (Zr_(0.3)Hf_(0.7))NiSn. Moreover, Ta substitution decouples and simultaneously increases the density-of-states effective mass (m~*) and the charge carrier mobility (μ), leading to a larger weighted mobility μ·(m~*)~(3/2). The lattice thermal conductivity is slightly suppressed due to increased point defect scattering. As a result, a Figure of Merit of 0.85 is achieved for (Zr_(0.3)Hf_(0.65)Ta_(0.05))NiSn compound at 870 K, ca. 180% improvement over the unsubstituted sample.
机译:研究了Ta取代的(ZrHf)NiSn基半霍斯勒化合物的热电性能。在此,与在Sn位点上广泛使用的Sb取代相反,在Hf位点上使用Ta来控制电荷载流子浓度。通过塞贝克系数,电阻率,热导率研究了Ta含量对(Zr_(0.3)Hf_(0.7-x)Ta_x)NiSn(x = 0,0.01,0.05)的热电和输运性质的影响,和霍尔系数测量。在单抛物线带模型的背景下分析结果。 Ta替代增加了电荷载流子浓度并抑制了杂质带的影响,该杂质带存在于原始的(Zr_(0.3)Hf_(0.7))NiSn中。而且,Ta取代解耦并同时增加了状态密度有效质量(m〜*)和电荷载流子迁移率(μ),导致更大的加权迁移率μ·(m〜*)〜(3/2)。由于点缺陷的散射增加,晶格热导率受到轻微抑制。结果,(Zr_(0.3)Hf_(0.65)Ta_(0.05))NiSn化合物在870 K,ca的品质因数达到0.85。与未取代的样品相比提高了180%。

著录项

  • 来源
    《Journal of Applied Physics》 |2014年第18期|183704.1-183704.8|共8页
  • 作者单位

    Laboratory for Solid State Chemistry and Catalysis, Empa, UEberlandstrasse 129, CH-8600 Duebendorf, Switzerland,Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Berne, Switzerland;

    Laboratory for Solid State Chemistry and Catalysis, Empa, UEberlandstrasse 129, CH-8600 Duebendorf, Switzerland;

    Laboratory for Solid State Chemistry and Catalysis, Empa, UEberlandstrasse 129, CH-8600 Duebendorf, Switzerland;

    Laboratory for Solid State Chemistry and Catalysis, Empa, UEberlandstrasse 129, CH-8600 Duebendorf, Switzerland;

    Laboratory for Solid State Chemistry and Catalysis, Empa, UEberlandstrasse 129, CH-8600 Duebendorf, Switzerland;

    Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Berne, Switzerland;

    Laboratory for Solid State Chemistry and Catalysis, Empa, UEberlandstrasse 129, CH-8600 Duebendorf, Switzerland,Materials Chemistry, Institute for Materials Science, University of Stuttgart, Heisenbergstr. 3, DE-70569 Stuttgart, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号