...
首页> 外文期刊>Journal of Applied Physics >Optical emission, shock-induced opacity, temperatures, and melting of Gd_3Ga_5O_(12) single crystals shock-compressed from 41 to 290 GPa
【24h】

Optical emission, shock-induced opacity, temperatures, and melting of Gd_3Ga_5O_(12) single crystals shock-compressed from 41 to 290 GPa

机译:从41 GPa压缩到290 GPa的Gd_3Ga_5O_(12)单晶的光发射,激振引起的不透明度,温度和熔化

获取原文
获取原文并翻译 | 示例
           

摘要

Strong oxides at high shock pressures have broad crossovers from elastic solids at ambient to failure by plastic deformation, to heterogeneous deformation to weak solids, to fluid-like solids that equilibrate thermally in a few ns, to melting and, at sufficiently high shock pressures and temperatures, to metallic fluid oxides. This sequence of crossovers in single-crystal cubic Gd_3Ga_5O_(12) (Gd-Ga Garnet-GGG) has been diagnosed by fast emission spectroscopy using a 16-channel optical pyrometer in the spectral range 400-800 nm with bandwidths per channel of 10 nm, a writing time of ~1000 ns and time resolution of 3 ns. Spectra were measured at shock pressures from 40 to 290 GPa (100GPa= 1 Mbar) with corresponding gray-body temperatures from 3000 to 8000 K. Experimental lifetimes were a few 100 ns. Below 130 GPa, emission is heterogeneous and measured temperatures are indicative of melting temperatures in grain boundary regions rather than bulk temperatures. At 130 GPa and 2200 K, GGG equilibrates thermally and homogeneously in a thin opaque shock front. This crossover has a characteristic spectral signature in going from partially transmitting shock-heated material behind the shock front to an opaque shock front. Opacity is caused by optical scattering and absorption of light generated by fast compression. GGG melts at ~5000K in a two-phase region at shock pressures in the range 200 GPa to 217 GPa. Hugoniot equation-of-state data were measured by a Doppler Pin SystemDPS with ps time resolution and are generally consistent with previous data. Extrapolation of previous electrical conductivity measurements indicates that GGG becomes a poor metal at a shock pressure above ~400 GPa. Because the shock impedance of GGG is higher than that of Al_2O_3 used previously to make metallic fluid H (MFH), the use of GGG to make MFH will achieve higher pressures and lower temperatures than use of Al_2O_3. However, maximum dynamic pressures at which emission temperatures of fluid hydrogen made by shock reverberation between GGG anvils could be measured remains limited to ~130 GPa, as for Al_2O_3 anvils.
机译:高冲击压力下的强氧化物具有广泛的跨度,从环境中的弹性固体到塑性变形破坏,非均质变形到弱固体,再到在数ns内达到热平衡的类流体固体融化,并在足够高的冲击压力下发生转变。温度下,变成金属氧化物。单晶立方Gd_3Ga_5O_(12)(Gd-Ga Garnet-GGG)中的交叉序列已通过快速发射光谱法使用16通道光学高温计在400-800 nm光谱范围内进行了诊断,每通道带宽为10 nm ,写入时间约为1000 ns,时间分辨率为3 ns。在40至290 GPa(100GPa = 1 Mbar)的冲击压力下以及在3000至8000 K的相应灰体温度下测量光谱。实验寿命为几百ns。低于130 GPa,发射是不均匀的,测得的温度表示晶界区域的熔化温度,而不是体温。在130 GPa和2200 K的压力下,GGG在薄薄的不透明冲击锋面中均热且均匀地平衡。该分频器具有特征性的光谱特征,从激波前沿后面的激波加热材料部分传输到不透明的激波前沿。不透明度是由光学散射和快速压缩产生的光的吸收引起的。 GGG在200 GPa至217 GPa的冲击压力下在两相区域中的〜5000K处熔化。 Hugoniot状态方程数据由具有ps时间分辨率的Doppler Pin SystemDPS测量,并且通常与以前的数据一致。根据先前的电导率测量结果推断,GGG在高于〜400 GPa的冲击压力下会变成一种不良金属。由于GGG的冲击阻抗高于先前用于制造金属流体H(MFH)的Al_2O_3,因此,与使用Al_2O_3相比,使用GGG制造MFH将获得更高的压力和更低的温度。但是,与Al_2O_3砧一样,可以测量GGG砧之间的冲击混响产生的液态氢的排放温度的最大动压仍限制在〜130 GPa。

著录项

  • 来源
    《Journal of Applied Physics》 |2015年第5期|055903.1-055903.9|共9页
  • 作者单位

    National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, Mianyang 621900, China;

    Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA;

    National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, Mianyang 621900, China;

    National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, Mianyang 621900, China;

    National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, Mianyang 621900, China;

    Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555, Japan;

    National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, Mianyang 621900, China;

    National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, Mianyang 621900, China;

    National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, Mianyang 621900, China;

    National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, Mianyang 621900, China;

    Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号