...
首页> 外文期刊>Journal of Applied Physics >Profile simulation model for sub-50 nm cryogenic etching of silicon using SF_6/O_2 inductively coupled plasma
【24h】

Profile simulation model for sub-50 nm cryogenic etching of silicon using SF_6/O_2 inductively coupled plasma

机译:使用SF_6 / O_2电感耦合等离子体对硅进行50 nm以下深冷蚀刻的轮廓模拟模型

获取原文
获取原文并翻译 | 示例

摘要

Cryogenic etching of silicon is a route to high aspect ratio silicon features with high mask selectivity and smooth sidewalls. These benefits have been realized even down to 10 nm half-pitch features. In this work, we develop a semi-empirical simulation model to understand mechanisms responsible for nanoscale profile evolution during plasma etching of silicon in SF_6/O_2 chemistry at cryogenic temperatures. The model parameters are first calibrated to the etching equipment using features from 500 nm to 2 μm. Using the calibrated model, we show the experimental finding that smaller features need more oxygen to achieve vertical anisotropic profiles. This is a consequence of two related effects: (1) the SiO_xF_y passivation layer sputtering yield is strongly dependent on the oxygen content at the feature sidewalls and (2) Knudsen transport within small features or higher aspect ratios depletes oxygen faster than fluorine due to the higher sticking coefficient of oxygen. The simulation was applied to 25 nm half-pitch features with excellent results.
机译:硅的低温蚀刻是通往具有高掩模选择性和光滑侧壁的高深宽比硅特征的途径。即使低至10 nm半间距功能,也已经实现了这些好处。在这项工作中,我们开发了一个半经验仿真模型,以了解在低温下SF_6 / O_2化学中硅的硅等离子刻蚀过程中负责纳米级轮廓演变的机制。首先使用500 nm至2μm的特征将模型参数校准到蚀刻设备。使用校准的模型,我们显示出实验发现,较小的特征需要更多的氧气才能获得垂直各向异性。这是两个相关影响的结果:(1)SiO_xF_y钝化层的溅射产量在很大程度上取决于特征侧壁的氧含量;(2)在小特征或较高长宽比内的Knudsen传输比氟更快地消耗了氧气,这是由于更高的氧气粘附系数。将该模拟应用于25 nm半间距特征,具有出色的结果。

著录项

  • 来源
    《Journal of Applied Physics 》 |2015年第5期| 053302.1-053302.13| 共13页
  • 作者单位

    Department of Micro- and Nanoelectronic Systems, Institute of Micro and Nanoelectronics, Faculty of Electrical Engineering and Information Technology, Ilmenau University of Technology, Gustav-Kirchhoff-Strasse 1, Ilmenau 98693, Germany,Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA;

    Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA;

    Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA,Oxford Instruments, 300 Baker Avenue, Suite 150, Concord, Massachusetts 01742, USA;

    Department of Micro- and Nanoelectronic Systems, Institute of Micro and Nanoelectronics, Faculty of Electrical Engineering and Information Technology, Ilmenau University of Technology, Gustav-Kirchhoff-Strasse 1, Ilmenau 98693, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号