首页> 外文期刊>Journal of Applied Physics >Analysis of 440 GeV proton beam-matter interaction experiments at the High Radiation Materials test facility at CERN
【24h】

Analysis of 440 GeV proton beam-matter interaction experiments at the High Radiation Materials test facility at CERN

机译:欧洲核子研究组织高辐射材料测试设施进行的440 GeV质子束流相互作用实验分析

获取原文
获取原文并翻译 | 示例
           

摘要

In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam-matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existence of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the numerical simulations are presented in this paper.
机译:在以前的论文中[Schmidt等,Phys。 Plasmas 21,080701(2014)],我们介绍了在欧洲核子研究组织(CERN)的高辐射材料测试设施进行的光束与物质相互作用实验的第一个结果。在这些实验中,用超级质子同步加速器(SPS)输送的440 GeV质子束辐照了固态铜的延伸圆柱靶。光束由大量高强度质子束组成,每个束的长度为0.5 ns,两个相邻束之间的间隙为50 ns,而整个束流的长度约为7μs。这些实验首次确定了流体动力隧穿现象的存在。还对这些实验进行了详细的数值模拟,这在另一篇论文中有详细报道[Tahir et al。,Phys。 Rev 90,063112(2014)]。在实验测量结果和模拟结果之间找到了极好的一致性,这验证了我们先前使用7 TeV质子的大型强子对撞机(LHC)光束进行的模拟[Tahir等,Phys。版本规格顶-加速。梁15,051003(2012)]。根据这些模拟,与单个质子相比,由于流体动力学隧穿,整个LHC质子束和强子阵雨的射程可增加一个数量级以上。这种效果对于设计强子加速器(例如SPS,LHC和Future Circular Collider)的机器保护系统具有非常重要的意义。最近,使用金属切割技术,将这些实验中使用的靶子分解成更细的块,以便进行目视和显微镜检查,以建立质子和相应强子阵雨的精确穿透深度。我们认为,这将有助于以更定量的方式研究非常重要的水力隧道现象。本文介绍了这项实验工作的细节,并与数值模拟进行了比较。

著录项

  • 来源
    《Journal of Applied Physics》 |2015年第5期|055902.1-055902.8|共8页
  • 作者单位

    CERN-AB, 1211 Geneva 23, Switzerland and Goethe University, Frankfurt, Germany;

    CERN-AB, 1211 Geneva 23, Switzerland;

    CERN-AB, 1211 Geneva 23, Switzerland and TV Vienna, Vienna, Austria;

    CERN-AB, 1211 Geneva 23, Switzerland;

    GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt, Germany;

    Institute of Problems of Chemical Physics, Chernogolovka, Russia;

    E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号