...
首页> 外文期刊>Journal of Applied Physics >Mechanisms for dose retention in conformal arsenic doping using a radial line slot antenna microwave plasma source
【24h】

Mechanisms for dose retention in conformal arsenic doping using a radial line slot antenna microwave plasma source

机译:使用径向线缝隙天线微波等离子体源在保形砷掺杂中保持剂量的机制

获取原文
获取原文并翻译 | 示例

摘要

Topographic structures such as Fin FETs and silicon nanowires for advanced gate fabrication require ultra-shallow high dose infusion of dopants into the silicon subsurface. Plasma doping meets this requirement by supplying a flux of inert ions and dopant radicals to the surface. However, the helium ion bombardment needed to infuse dopants into the fin surface can cause poor dose retention. This is due to the interaction between substrate damage and post doping process wet cleaning solutions required in the front end of line large-scale integration fabrication. We present findings from surface microscopy experiments that reveal the mechanism for dose retention in arsenic doped silicon fin samples using a microwave RLSA™ plasma source. Dilute aqueous hydrofluoric acid (DHF) cleans by themselves are incompatible with plasma doping processes because the films deposited over the dosed silicon and ion bombardment damaged silicon are readily removed. Oxidizing wet cleaning chemistries help retain the dose as silica rich over-layers are not significantly degraded. Furthermore, the dosed retention after a DHF clean following an oxidizing wet clean is unchanged. Still, the initial ion bombardment energy and flux are important. Large ion fluxes at energies below the sputter threshold and above the silicon damage threshold, before the silicon surface is covered by an amorphous mixed phase layer, allow for enhanced uptake of dopant into the silicon. The resulting dopant concentration is beyond the saturation limit of crystalline silicon.
机译:用于先进栅极制造的诸如Fin FET和硅纳米线之类的形貌结构要求将掺杂剂超浅高剂量注入硅表面。等离子体掺杂通过向表面提供惰性离子和掺杂剂自由基来满足此要求。然而,将掺杂剂注入鳍片表面所需的氦离子轰击会导致不良的剂量保留。这是由于基板损伤与大规模大规模集成制造前端所需的掺杂后工艺湿法清洗溶液之间的相互作用所致。我们提供了表面显微镜实验的发现,这些发现揭示了使用微波RLSA™等离子体源在砷掺杂的硅鳍片样品中保持剂量的机制。稀氢氟酸水溶液(DHF)本身与等离子体掺杂工艺不兼容,因为沉积在定量硅上的膜和离子轰击损坏的硅很容易去除。氧化湿法清洁化学品有助于保持剂量,因为富含二氧化硅的覆盖层不会显着降解。此外,在氧化湿法清洗后的DHF清洗后的剂量保留没有变化。初始离子轰击能量和通量仍然很重要。在硅表面被非晶态混合相层覆盖之前,在低于溅射阈值和高于硅破坏阈值的能量下,较大的离子通量允许提高掺杂剂对硅的吸收。所得的掺杂剂浓度超过了晶体硅的饱和极限。

著录项

  • 来源
    《Journal of Applied Physics 》 |2015年第22期| 224904.1-224904.7| 共7页
  • 作者单位

    Tokyo Electron Ltd., Technology Center Sendai, 650 Mistuzawa, Hosaka-cho, Nirasaki, Yamanashi 407-0192, Japan;

    Tokyo Electron America, Inc., 2400 Grove Blvd., Austin, Texas 78741, USA;

    Tokyo Electron Ltd., Technology Center Sendai, 650 Mistuzawa, Hosaka-cho, Nirasaki, Yamanashi 407-0192, Japan;

    Tokyo Electron Ltd., Technology Center Sendai, 650 Mistuzawa, Hosaka-cho, Nirasaki, Yamanashi 407-0192, Japan;

    Tokyo Electron Ltd., Technology Center Sendai, 650 Mistuzawa, Hosaka-cho, Nirasaki, Yamanashi 407-0192, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号