...
首页> 外文期刊>Journal of Applied Physics >Gate controlled electronic transport in monolayer MoS_2 field effect transistor
【24h】

Gate controlled electronic transport in monolayer MoS_2 field effect transistor

机译:单层MoS_2场效应晶体管中的栅极控制电子传输

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The electronic spin and valley transport properties of a monolayer MoS_2 are investigated using the non-equilibrium Green's function formalism combined with density functional theory. Due to the presence of strong Rashba spin orbit interaction (RSOI), the electronic valence bands of monolayer MoS_2 are split into spin up and spin down Zeeman-like texture near the two inequivalent vertices K and K' of the first Brillouin zone. When the gate voltage is applied in the scattering region, an additional strong RSOI is induced which generates an effective magnetic field. As a result, electron spin precession occurs along the effective magnetic field, which is controlled by the gate voltage. This, in turn, causes the oscillation of conductance as a function of the magnitude of the gate voltage and the length of the gate region. This current modulation due to the spin precession shows the essential feature of the long sought Datta-Das field effect transistor (FET). From our results, the oscillation periods for the gate voltage and gate length are found to be approximately 2.2 V and 20.03α_B (α_B is Bohr radius), respectively. These observations can be understood by a simple spin precessing model and indicate that the electron behaviors in monolayer MoS_2 FET are both spin and valley related and can easily be controlled by the gate.
机译:利用非平衡格林函数形式主义和密度泛函理论研究了单层MoS_2的电子自旋和谷输运性质。由于存在强Rashba自旋轨道相互作用(RSOI),单层MoS_2的电子价带在第一个布里渊区的两个不等价顶点K和K'附近分裂成自旋和自旋塞曼状结构。当在散射区中施加栅极电压时,会感应出一个额外的强RSOI,从而产生有效的磁场。结果,电子自旋进动沿有效磁场发生,该磁场由栅极电压控制。这进而导致电导振荡,该电导振荡是栅极电压的大小和栅极区域的长度的函数。由于自旋进动而引起的这种电流调制显示了长期寻求的Datta-Das场效应晶体管(FET)的基本特征。根据我们的结果,发现栅极电压和栅极长度的振荡周期分别约为2.2 V和20.03α_B(α_B为玻尔半径)。这些观察结果可以通过简单的自旋旋进模型理解,并表明单层MoS_2 FET中的电子行为与自旋和谷相关,并且可以轻松地由栅极控制。

著录项

  • 来源
    《Journal of Applied Physics》 |2015年第10期|104307.1-104307.4|共4页
  • 作者单位

    School of Physics Science and Technology, and Institute of Computational Condensed Matter Physics, Shenzhen University, Shenzhen 518060, People's Republic of China;

    School of Physics and Optoelectronics, South China University of Technology, Guangzhou, People's Republic of China;

    School of Physics Science and Technology, and Institute of Computational Condensed Matter Physics, Shenzhen University, Shenzhen 518060, People's Republic of China;

    School of Physics Science and Technology, and Institute of Computational Condensed Matter Physics, Shenzhen University, Shenzhen 518060, People's Republic of China;

    School of Physics Science and Technology, and Institute of Computational Condensed Matter Physics, Shenzhen University, Shenzhen 518060, People's Republic of China;

    Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号