首页> 外文期刊>Journal of Applied Physics >Effect of interfacial structures on spin dependent tunneling in epitaxial L1_0-FePt/MgO/FePt perpendicular magnetic tunnel junctions
【24h】

Effect of interfacial structures on spin dependent tunneling in epitaxial L1_0-FePt/MgO/FePt perpendicular magnetic tunnel junctions

机译:界面结构对外延L1_0-FePt / MgO / FePt垂直磁性隧道结中自旋相关隧穿的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Epitaxial FePt(001)/MgO/FePt magnetic tunnel junctions with L1_0-FePt electrodes showing perpendicular magnetic anisotropy were fabricated by molecular beam epitaxial growth. Tunnel magnetoresistance ratios of 21% and 53% were obtained at 300K and 10K, respectively. Our previous work, based on transmission electron microscopy, confirmed a semi-coherent interfacial structure with atomic steps (Kohn et al., APL 102, 062403 (2013)). Here, we show by x-ray photo-emission spectroscopy and first-principles calculation that the bottom FePt/MgO interface is either Pt-terminated for regular growth or when an Fe layer is inserted at the interface, it is chemically bonded to O. Both these structures have a dominant role in spin dependent tunneling across the MgO barrier resulting in a decrease of the tunneling magnetoresistance ratio compared with previous predictions.
机译:通过分子束外延生长制备了具有垂直磁各向异性的L1_0-FePt电极的外延FePt(001)/ MgO / FePt磁隧道结。在300K和10K时分别获得21%和53%的隧道磁阻率。我们基于透射电子显微镜的先前工作证实了具有原子台阶的半相干界面结构(Kohn等人,APL 102,062403(2013))。在这里,我们通过X射线光电子能谱和第一性原理计算表明,底部的FePt / MgO界面要么是Pt端基的以便正常生长,要么在界面处插入Fe层时,它化学键合到O.与先前的预测相比,这两种结构在穿过MgO势垒的自旋相关隧穿中均具有主导作用,从而导致隧穿磁阻比降低。

著录项

  • 来源
    《Journal of Applied Physics》 |2015年第8期|083904.1-083904.4|共4页
  • 作者单位

    State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom;

    Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom;

    Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;

    Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;

    Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;

    Department of Physics and Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA,Center for Nanophase Materials Sciences and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6493, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号