首页> 外文期刊>Journal of Applied Physics >Durable ultrathin silicon nitride/carbon bilayer overcoats for magnetic heads: The role of enhanced interfacial bonding
【24h】

Durable ultrathin silicon nitride/carbon bilayer overcoats for magnetic heads: The role of enhanced interfacial bonding

机译:用于磁头的耐用超薄氮化硅/碳双层涂层:增强的界面粘合作用

获取原文
获取原文并翻译 | 示例
       

摘要

Pole tip recession (PTR) is one of the major issues faced in magnetic tape storage technology, which causes an increase in the magnetic spacing and hence signal loss during data readback. Despite efforts to reduce the magnetic spacing, PTR, and surface wear on the heads by using protective overcoats, most of them either employ complex fabrication processes and approaches do not provide adequate protection to the head or are too thick (~10-20nm), especially for future high density tape storage. In this work, we discuss an approach to reduce the PTR and surface wear at the head by developing an ultrathin ~7 nm bilayer overcoat of silicon/silicon nitride (Si/SiN_x) and carbon (C), which is totally fabricated by a cost-effective and industrial-friendly magnetron sputtering process. When compared with a monolithic C overcoat of similar thickness, the electrically insulating Si/SiN_x/C bilayer overcoat was found to provide better wear protection for commercial tape heads, as demonstrated by Auger electron spectroscopic analyses after wear tests with commercial tape media. Although the microstructures of carbon in the monolithic and bilayer overcoats were similar, the improved wear durability of the bilayer overcoat was attributed to the creation of extensive interfacial bonding of Si and N with the C overcoat and the alumina-titanium carbide composite head substrate, as predicted by time-of-flight secondary ion mass spectrometry and confirmed by in-depth X-ray photoelectron spectroscopy analyses. This study highlights the pivotal role of enhanced interfaces and interfacial bonding in developing ultrathin yet wear-durable overcoats for tape heads.
机译:磁极尖端凹进(PTR)是磁带存储技术面临的主要问题之一,它导致磁间距增加,从而导致数据回读期间的信号丢失。尽管已通过使用保护性外涂层来减少磁间距,PTR和头部的表面磨损的努力,但它们中的大多数要么采用复杂的制造工艺,但方法不能为头部提供足够的保护,或者厚度过大(约10至20nm),特别是对于未来的高密度磁带存储。在这项工作中,我们将讨论通过开发硅/氮化硅(Si / SiN_x)和碳(C)的超薄〜7 nm双层外涂层来减少头部的PTR和表面磨损的方法,该方法完全由成本来制造高效且工业友好的磁控溅射工艺。当与具有类似厚度的单片C外涂层相比时,发现电绝缘的Si / SiN_x / C双层外涂层可为商业磁带头提供更好的磨损保护,如对商业磁带介质进行磨损测试后的俄歇电子光谱分析所证明的。尽管单层和双层外涂层中碳的微观结构相似,但双层外涂层的耐磨性得到改善,这归因于Si和N与C外涂层和氧化铝-碳化钛复合材料头部基体之间广泛的界面结合。通过飞行时间二次离子质谱分析预测,并通过深入的X射线光电子能谱分析得到证实。这项研究强调了增强界面和界面粘合在开发用于胶带头的超薄且耐磨的外涂层中的关键作用。

著录项

  • 来源
    《Journal of Applied Physics》 |2015年第4期|045310.1-045310.16|共16页
  • 作者单位

    Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore 117583;

    Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore 117583;

    Institute of Microelectronics (IME), A*STAR (Agency for Science, Technology, and Research), 11 Science Park Road, Singapore Science Park Ⅱ, Singapore, Singapore 117685;

    Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology, and Research), 3 Research Link, Singapore, Singapore 117602;

    Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore 117575;

    Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology, and Research), 3 Research Link, Singapore, Singapore 117602;

    Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore 117583;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:09:00

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号